精英家教网 > 高中数学 > 题目详情
19.设随机变量ξ~N(0,1),若P(ξ≥1)=p,则P(-1<ξ<0)=$\frac{1}{2}-$p.

分析 根据正态分布的对称性计算.

解答 解:∵ξ~N(0,1),
∴P(ξ≤-1)=P(ξ≥1)=p,
∴P(-1<ξ<0)=$\frac{1}{2}$P(-1<ξ<1)=$\frac{1}{2}$(1-2p)=$\frac{1}{2}$-p.
故答案为:$\frac{1}{2}-$p.

点评 本题考查了正态分布的特点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.过点(1,2)且与直线2x-y+1=0垂直的直线方程为x+2y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin15°+cos15°=(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若2sinα+cosα=0,则$\frac{4sinα-3cosα}{2sinα+5cosα}$=$-\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=mlnx+x2-mx在区间(0,+∞)内单调递增.则实数m的取值范围为(  )
A.[0,8]B.(0,8]C.(-∞,0]∪[8,+∞)D.(-∞,0)∪(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数y=ln(2x)+$\frac{e}{x}$+a(其中e为自然对数的底数)的最小值为ln2,则a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={1,2,3,4},B={x|x2-x-2>0},则A∩B={3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图.四棱锥P-ABCD中.平而PAD⊥平而ABCD,底而ABCD为梯形.AB∥CD,AB=
2DC=2$\sqrt{3}$,AC∩BD=F,且△PAD与△ABD均为正三角形,G为△PAD的重心.
(1)求证:GF∥平面PDC;
(2)求平面AGC与平面PAB所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={0,1,2},B={y|y=2x},则A∩B=(  )
A.{0,1,2}B.{1,2}C.{1,2,4}D.{1,4}

查看答案和解析>>

同步练习册答案