分析 (1)根据题意,对函数f(x)求导函数,分析导数的符号,由导数与函数的单调性的关系可确定函数的单调性;
(2)f(x)在x=1处取得极小值f(1)=e,根据f(-2)=13e-2<e,可得f(x)仅在x=-2处取得[-2,t]上的最小值f(-2),从而当t>-2时,f(-2)<f(t),故问题得证;
(3)设g(x)=f(x)+(x-2)ex=(x-1)2ex,当x>1时判断方程g(x)=x根的个数等价于(x-1)2ex=x当x>1时根的个数,构造函数,利用导数知识求解即可.
解答 解:(1)因为f′(x)=(x2-3x+3)•ex+(2x-3)•ex=x(x-1)•ex.
当t>1时,由f′(x)>0,可得t>x>1或-2<x<0;由f′(x)<0,可得0<x<1,
所以f(x)在(-2,0),(1,t)上递增,在(0,1)上递减.
(2)证明:由f′(x)>0,可得x>1或x<0;由f′(x)<0,可得0<x<1
所以f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减,所以f(x)在x=1处取得极小值f(1)=e.
又∵f(-2)=13e-2<e,所以f(x)仅在x=-2处取得[-2,t]上的最小值f(-2)
从而当t>-2时,f(-2)<f(t),即m<n.
(3)设g(x)=f(x)+(x-2)ex=(x-1)2ex,当x>1时判断方程g(x)=x根的个数等价于(x-1)2ex=x当x>1时根的个数
设h(x)=(x-1)2ex-x(x>1),则h′(x)=(x2-1)ex-1,
再设k(x)(x2-1)ex-1(x>1),则k′(x)=(x2+2x-1)ex,
当x>1时,k′(x)>1,即k(x)在(1,+∞)单调递增![]()
∵k(1)=-1<0,k(2)=3e2-1>0
∴在(1,2)上存在唯一x0,使k(x0)=0,即存在唯一x0∈(1,2),使h′(x0)=0
函数h(x)在(1,x0)上,h′(x0)<0,函数单调减,在(x0,+∞)上,h′(x0)>0,函数单调增,
∴h(x)min=h(x0)<h(1)=-1<0
∵h(2)=e2-2>0
y=h(x)的大致图象如图,
由此可得y=h(x)在(1,+∞)上只有一个零点,即g(x)=x,x>1时只有1个实根.
点评 本题考查导数与函数的单调性的关系,涉及利用导数求函数的极值与最值,根据题意,构造函数,确定函数的单调性是关键.
科目:高中数学 来源: 题型:选择题
| A. | 3600 | B. | 1080 | C. | 1440 | D. | 2520 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{5}}{3}$ | B. | 2 | C. | $\frac{5\sqrt{5}}{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com