| A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)的解析式;再利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得正数m的最小值.
解答 解:根据函数f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2}$)的图象,可得A=1,$\frac{3}{4}•\frac{2π}{ω}$=$\frac{11π}{12}$-$\frac{π}{6}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$.∴f(x)=sin(2x+$\frac{π}{6}$).
将f(x)的图象向右平移m个单位得到g(x)=sin(2x-2m+$\frac{π}{6}$)的图象关于y轴对称,
∴-2m+$\frac{π}{6}$=kπ+$\frac{π}{2}$,∴m=-$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,取k=-1,可得正数m的最小值为$\frac{π}{3}$,
故选:C.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值;函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (-∞,3) | C. | (0,3) | D. | (-1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{9}{2}$ | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[-\frac{2}{3},-\frac{4}{e^2}]$ | B. | $[-\frac{2}{e},2e]$ | C. | $[-\frac{4}{e^2},2e]$ | D. | $[-\frac{4}{e^2},+∞]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com