精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)(sinx+cosx)2+2cos2x-2
(1)求函数f(x)的最小正周期T;
(2)求f(x)的最大值,并指出取得最大值时x取值集合;
(3)当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时,求函数f(x)的值域.

分析 (1)利用二倍角和辅助角公式化简为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期;
(2)根据三角函数的性质即可得f(x)的最大值,以及取得最大值时x取值集合;
(3)当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值,即得到f(x)的值域.

解答 解:函数f(x)=(sinx+cosx)2+2cos2x-2
化简可得:f(x)=1+2sinxcosx+1+cos2x-2=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)
(1)函数f(x)的最小正周期T=$\frac{2π}{2}=π$.
(2)令2x+$\frac{π}{4}$=$\frac{π}{2}+2kπ$,k∈Z,
得:x=$kπ+\frac{π}{8}$.
∴当x=$kπ+\frac{π}{8}$时,f(x)取得最大值为$\sqrt{2}$.
∴取得最大值时x取值集合为{x|x=$kπ+\frac{π}{8}$,k∈Z}.
(3)当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时,
可得:2x+$\frac{π}{4}$∈[$\frac{3π}{4}$,$\frac{7π}{4}$],
∴-1≤sin(2x+$\frac{π}{4}$)≤$\frac{\sqrt{2}}{2}$
∴$-\sqrt{2}$≤$\sqrt{2}$sin(2x+$\frac{π}{4}$)≤1.
故得当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时,函数f(x)的值域为[$-\sqrt{2}$,1].

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2}$)的图象如图所示,将f(x)的图象向右平移m个单位得到g(x)的图象关于y轴对称,则正数m的最小值为(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的极值,并证明f(x)>g(x)+$\frac{1}{2}$,x∈(0,e]恒成立;
(2)是否存在实数a,使f(x)的最小值为3?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且满足Sn=n2-4n,数列{bn}中,b1=$\frac{a_2}{{3+{a_3}}}$对任意正整数$n≥2,{b_{n+1}}+{b_n}={({\frac{1}{3}})^n}$.
(1)求数列{an}的通项公式;
(2)是否存在实数μ,使得数列{3n•bn+μ}是等比数列?若存在,请求出实数μ及公比q的值,若不存在,请说明理由;
(3)求证:$\frac{1}{4}≤{b_1}+{b_2}+…+{b_n}<\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(c+a,b),$\overrightarrow{n}$=(c-a,b-c),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角A的大小;
(2)若a=3,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在数列{an}中,a1+2a2++22a3+…2n-1an=(n•2n-2n+1)t对任意n∈N*成立,其中常数t>0.若关于n的不等式$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{8}}$+…+$\frac{1}{{a}_{{2}^{n}}}$>$\frac{m}{{a}_{1}}$的解集为{n|n≥4,n∈N*},则实数m的取值范围是[$\frac{7}{8}$,$\frac{15}{16}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.小明在花店定了一束鲜花,花店承诺将在第二天旱上7:30~8:30之间将鲜花送到小明家,若小明第二天离开家去公司上班的时间在早上8:00~9:00之间,则小明在离开家之前能收到这束鲜花的概率是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的前n项和为Sn,a5=10,且S6+3a7=S8+12,则公差d等于(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x,y满足约束条件$\left\{\begin{array}{l}x+y-2≤0\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,若z=3x+y,则z的最小值为-8.

查看答案和解析>>

同步练习册答案