精英家教网 > 高中数学 > 题目详情
15.已知等差数列{an}的前n项和为Sn,a5=10,且S6+3a7=S8+12,则公差d等于(  )
A.1B.$\frac{3}{2}$C.2D.3

分析 利用等差数列的前n项和公式和通项公式,列出方程组,能求出公差.

解答 解:∵等差数列{an}的前n项和为Sn,a5=10,且S6+3a7=S8+12,
∴$\left\{\begin{array}{l}{{a}_{1}+4d=10}\\{6{a}_{1}+\frac{6×5}{2}d+3({a}_{1}+6d)=8{a}_{1}+\frac{8×7}{2}d+12}\end{array}\right.$,
解得a1=2,d=2.
∴公差d等于2.
故选:C.

点评 本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=xsinx,则f(x)在x=$\frac{π}{2}$处的导数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)(sinx+cosx)2+2cos2x-2
(1)求函数f(x)的最小正周期T;
(2)求f(x)的最大值,并指出取得最大值时x取值集合;
(3)当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinA,c>$\sqrt{3}$a.
(1)求B的取值范围;
(2)当C=$\frac{2π}{3}$,AB边上的中线长为l时,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),若f(2)=2,则f(2017)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平行四边形OABC中,O为坐标原点,过点C(1,3)作CD⊥AB于点D,
(1)求CD所在直线的方程;
(2)当D(4,2)时,求△OCD外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2x+1,数列{an}满足a1=1,${a_{n+1}}=f({a_n})-1(n∈{N^*})$,数列{bn}为等差数列,首项b1=1,公差为2.
(1)求数列{an}、{bn}的通项公式;
(2)令${c_n}={a_n}+{b_n}(n∈{N^*})$,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设等差数列{an}的前n项和为Sn,等差数列{bn}的前n项和为Tn,若此时满足$\frac{S_n}{T_n}=\frac{n-3}{n+3}$,则$\frac{a_2}{{{b_{10}}+{b_{20}}}}+\frac{{{a_{28}}}}{{{b_{12}}+{b_{18}}}}$=(  )
A.1B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{13}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.曲线y=ex+1在点(0,2)处的切线与直线y=0和y=-x围成的三角形的面积为(  )
A.1B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案