1£®ÔÚÊýÁÐ{an}ÖУ¬a1+2a2++22a3+¡­2n-1an=£¨n•2n-2n+1£©t¶ÔÈÎÒân¡ÊN*³ÉÁ¢£¬ÆäÖг£Êýt£¾0£®Èô¹ØÓÚnµÄ²»µÈʽ$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{8}}$+¡­+$\frac{1}{{a}_{{2}^{n}}}$£¾$\frac{m}{{a}_{1}}$µÄ½â¼¯Îª{n|n¡Ý4£¬n¡ÊN*}£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ[$\frac{7}{8}$£¬$\frac{15}{16}$£©£®

·ÖÎö ÓÉÒÑÖªµÈʽ£¬ÔÙдһʽ£¬Á½Ê½Ïà¼õ£¬¼´¿ÉÖ¤Ã÷ÊýÁÐ{an}µÄͨÏ¹ØÓÚnµÄ²»µÈʽ$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{8}}$+¡­+$\frac{1}{{a}_{{2}^{n}}}$£¾$\frac{m}{{a}_{1}}$»¯¼òΪ$\frac{1}{t}£¨1-\frac{1}{{2}^{n}}£©£¾\frac{m}{t}$£®ÒÑÖªt£¾0£¬½áºÏº¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉÇóbºÍcµÄȡֵ·¶Î§£®

½â´ð ½â£ºµ±n¡Ý2ʱ£¬a1+2a2++22a3+¡­2n-1an=£¨n•2n-2n+1£©t¡­¢Ù
µÃa1+2a2++22a3+¡­2n-2an-1=[£¨n-1£©•2n-1-2n-1+1£©t¡­¢Ú
½«¢Ù£¬¢ÚÁ½Ê½Ïà¼õ£¬µÃ 2n-1 an=£¨n•2n-2n+1£©t-[£¨n-1£©•2n-1-2n-1+1]t£¬
»¯¼ò£¬µÃan=nt£¬ÆäÖÐn¡Ý2£®¡­£¨5·Ö£©
ÒòΪa1=t£¬ËùÒÔan=nt£¬ÆäÖÐn¡ÊN*£®
¡à${a}_{{2}^{n}}={2}^{n}t$£®
¡à$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{8}}$+¡­+$\frac{1}{{a}_{{2}^{n}}}$=$\frac{1}{2t}+\frac{1}{4t}+\frac{1}{8t}+¡­+\frac{1}{{2}^{n}t}$=$\frac{1}{t}¡Á\frac{\frac{1}{2}£¨1-\frac{1}{{2}^{n}}£©}{1-\frac{1}{2}}=\frac{1}{t}£¨1-\frac{1}{{2}^{n}}£©$
ÓÖ¡ß$\frac{1}{{a}_{1}}=\frac{1}{t}$£¬Ôò¹ØÓÚnµÄ²»µÈʽ$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{8}}$+¡­+$\frac{1}{{a}_{{2}^{n}}}$£¾$\frac{m}{{a}_{1}}$»¯¼òΪ$\frac{1}{t}£¨1-\frac{1}{{2}^{n}}£©£¾\frac{m}{t}$£®
µ±t£¾0ʱ£¬¿¼²ì²»µÈʽΪ$\frac{1}{t}£¨1-\frac{1}{{2}^{n}}£©£¾\frac{m}{t}$£®µÄ½â£¬
ÓÉÌâÒ⣬֪²»µÈʽ1-$\frac{1}{{2}^{n}}$£¾mµÄ½â¼¯Îª{n|n¡Ý4£¬n¡ÊN*}£¬
ÒòΪº¯Êýy=1-$\frac{1}{{2}^{x}}$ÔÚRÉϵ¥µ÷µÝÔö£¬ËùÒÔÖ»ÒªÇó1-$\frac{1}{{2}^{4}}£¾m$ ÇÒ1-$\frac{1}{{2}^{3}}$¡Üm¼´¿É£¬¡à$\frac{7}{8}¡Üm£¼\frac{15}{16}$£®
ËùÒÔ£¬ÊµÊýmµÄȡֵ·¶Î§ÊÇ[$\frac{7}{8}£¬\frac{15}{16}$£©£®
¹Ê´ð°¸Îª£º[$\frac{7}{8}£¬\frac{15}{16}$£©£®

µãÆÀ ±¾Ì⿼²éÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÍÖÔ²C£º4x2+y2=4m2£¨m£¾0£©£¬¹ýÔ­µãµÄÖ±ÏßÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬µãPÊÇÍÖÔ²ÉϵÄÈÎÒâÒ»µãÇÒÖ±ÏßPA£¬PBÓë×ø±êÖ᲻ƽÐУ®
£¨1£©Ö¤Ã÷£ºÖ±ÏßPAµÄбÂÊÓëÖ±ÏßPBбÂÊÖ®»ýΪ¶¨Öµ£»
£¨2£©ÈôA£¬B²»ÊÇÍÖÔ²CµÄ¶¥µã£¬ÇÒPA¡ÍAB£¬Ö±ÏßBPÓëxÖᣬyÖá·Ö±ð½»ÓÚE£¬FÁ½µã£®
£¨i£©Ö¤Ã÷£ºÖ±ÏßBPµÄбÂÊÓëÖ±ÏßAFбÂÊÖ®±ÈΪ¶¨Öµ£»
£¨ii£©¼Ç¡÷OEFµÄÃæ»ýΪS¡÷OEF£¬Çó$\frac{{{S_{¡÷OEF}}}}{m^2}$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ1£¬ÒÑÖªÌÝÐÎABCDÖУ¬BC¡ÎAD£¬BC=BE=1£¬AD=4£¬EΪADµÄÖе㣬BE¡ÍAD£®½«¡÷ABEÑØBEÕÛÆðµ½¡÷PBEµÄλÖã¬Ê¹¡ÏPED=120¡ã£¬Èçͼ2£®MÊÇÀâPBÉϵÄÒ»µã£¨M²»ÓëP£¬BÖØºÏ£©£¬Æ½ÃæDEM½»PCÓÚN£®

£¨¢ñ£©ÇóÖ¤£ºDE¡ÎMN£»
£¨¢ò£©ÇóÆ½ÃæPBEÓëÆ½ÃæPCDËù³ÉÈñ¶þÃæ½ÇµÄÓàÏÒÖµ£»
£¨¢ó£©ÊÇ·ñ´æÔÚµãM£¬Ê¹µÃÆ½ÃæMNDE¡ÍÆ½ÃæPCD£¿Èô´æÔÚ£¬Çó³ö$\frac{PM}{PB}$µÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®¡÷ABCÖУ¬ÒÑÖªA£¨-1£¬2£©£¬B£¨3£¬4£©£¬C£¨0£¬3£©£¬ÔòAB±ßÉϵĸßCHËùÔÚÖ±Ïߵķ½³ÌΪ2x+y-3=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©£¨sinx+cosx£©2+2cos2x-2
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚT£»
£¨2£©Çóf£¨x£©µÄ×î´óÖµ£¬²¢Ö¸³öÈ¡µÃ×î´óֵʱxȡֵ¼¯ºÏ£»
£¨3£©µ±x¡Ê[$\frac{¦Ð}{4}$£¬$\frac{3¦Ð}{4}$]ʱ£¬Çóº¯Êýf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ2$\sqrt{3}$£¨sin2A-sin2C£©=£¨a-b£©sinB£¬¡÷ABCµÄÍâ½ÓÔ²°ë¾¶Îª$\sqrt{3}$£¬Ôò¡÷ABCÃæ»ýµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{3}{8}$B£®$\frac{3}{4}$C£®$\frac{9\sqrt{3}}{8}$D£®$\frac{9\sqrt{3}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÈôsinB=2sinA£¬c£¾$\sqrt{3}$a£®
£¨1£©ÇóBµÄȡֵ·¶Î§£»
£¨2£©µ±C=$\frac{2¦Ð}{3}$£¬AB±ßÉϵÄÖÐÏß³¤Îªlʱ£¬ÇóS¡÷ABC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎOABCÖУ¬OÎª×ø±êÔ­µã£¬¹ýµãC£¨1£¬3£©×÷CD¡ÍABÓÚµãD£¬
£¨1£©ÇóCDËùÔÚÖ±Ïߵķ½³Ì£»
£¨2£©µ±D£¨4£¬2£©Ê±£¬Çó¡÷OCDÍâ½ÓÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=2sin¦Øx£¨¦Ø£¾0£©ÔÚyÖáÓÒ²àͼÏóÉϵĵÚÒ»¸ö×î¸ßµãºÍµÚÒ»¸ö×îµÍµãµÄ¾àÀëÊÇ2$\sqrt{13}$£¬Ôò¦ØÊÇ$\frac{¦Ð}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸