精英家教网 > 高中数学 > 题目详情
2.已知i是虚数单位,则z=$\frac{3+2i}{i}$+$\frac{2+i}{1-2i}$i(i为虚数单位)所对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:z=$\frac{3+2i}{i}$+$\frac{2+i}{1-2i}$i=$\frac{-i(3+2i)}{-i•i}$+$\frac{(2i-1)(1+2i)}{(1-2i)(1+2i)}$=2-3i+$\frac{-5}{5}$=1-3i,
因此所对应的点(1,-3)位于复平面内的第四象限.
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.(ax-$\frac{3}{4x}$+$\frac{2}{3}$)(x-$\frac{2}{x}$)6的展开式中各项系数的和为16,则展开式中x3项的系数为(  )
A.974B.$\frac{63}{2}$C.57D.33

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在(3x+2y-1)10的展开式中,不含y的所有项的系数和为210

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知sin(-π+θ)+2cos(3π-θ)=0,则$\frac{sinθ+cosθ}{sinθ-cosθ}$=(  )
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x|x2-2x-3<0},B={x|x>0},则A∪B=(  )
A.(-1,+∞)B.(-∞,3)C.(0,3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设正实数a,b,c分别满足2a2+a=1,blog2b=1,clog5c=1,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.定义在区间[-2,t](t>-2)上的函数f(x)=(x2-3x+3)ex(其中e为自然对数的底).
(1)当t>1时,求函数y=f(x)的单调区间;
(2)设m=f(-2),n=f(t),求证:m<n;
(3)设g(x)=f(x)+(x-2)ex,当x>1时,试判断方程g(x)=x的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:4x2+y2=4m2(m>0),过原点的直线与椭圆C交于A,B两点,点P是椭圆上的任意一点且直线PA,PB与坐标轴不平行.
(1)证明:直线PA的斜率与直线PB斜率之积为定值;
(2)若A,B不是椭圆C的顶点,且PA⊥AB,直线BP与x轴,y轴分别交于E,F两点.
(i)证明:直线BP的斜率与直线AF斜率之比为定值;
(ii)记△OEF的面积为S△OEF,求$\frac{{{S_{△OEF}}}}{m^2}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,已知梯形ABCD中,BC∥AD,BC=BE=1,AD=4,E为AD的中点,BE⊥AD.将△ABE沿BE折起到△PBE的位置,使∠PED=120°,如图2.M是棱PB上的一点(M不与P,B重合),平面DEM交PC于N.

(Ⅰ)求证:DE∥MN;
(Ⅱ)求平面PBE与平面PCD所成锐二面角的余弦值;
(Ⅲ)是否存在点M,使得平面MNDE⊥平面PCD?若存在,求出$\frac{PM}{PB}$的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案