精英家教网 > 高中数学 > 题目详情
5.设集合S={1,2,3,4,5},从S的所有非空子集中随机选出一个,设所取出的非空子集的最大元素为ξ,则ξ的数学期望为$\frac{129}{31}$.

分析 依题意知ξ的所有可能取值为1,2,3,4,5,分别求出相应的概率,再计算ξ的分布列和数学期望E(ξ).

解答 解:根据题意,ξ的所有可能取值为1,2,3,4,5;
则P(ξ=1)=$\frac{1}{{2}^{5}-1}$=$\frac{1}{31}$,
P(ξ=2)=$\frac{1+1}{{2}^{5}-1}$=$\frac{2}{31}$,
P(ξ=3)=$\frac{{C}_{2}^{0}{+C}_{2}^{1}{+C}_{2}^{2}}{{2}^{5}-1}$=$\frac{4}{31}$,
P(ξ=4)=$\frac{{C}_{3}^{0}{+C}_{3}^{1}+…{+C}_{3}^{3}}{{2}^{5}-1}$=$\frac{8}{31}$,
P(ξ=5)=$\frac{{C}_{4}^{0}{+C}_{4}^{1}{+…+C}_{4}^{4}}{{2}^{5}-1}$=$\frac{16}{31}$,
故ξ的分布列为:

 ξ 1 2 3 4
 P $\frac{1}{31}$$\frac{2}{31}$ $\frac{4}{31}$ $\frac{8}{31}$$\frac{16}{31}$
从而E(ξ)=1×$\frac{1}{31}$+2×$\frac{2}{31}$+3×$\frac{4}{31}$+4×$\frac{8}{31}$+5×$\frac{16}{31}$=$\frac{129}{31}$.
故答案为:$\frac{129}{31}$.

点评 本题考查了离散型随机变量的分布列及数学期望的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:n=2及n=3时,如图,记Sn为每个序列中最后一列数之和,则S7为(  )
A.1089B.680C.840D.2520

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:
空气质量指数t(0,50](50,100](100,150](150,200](200,300](300,+∞)
质量等级轻微污染轻度污染中度污染严重污染
天数K52322251510
(1)在该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y=$\left\{\begin{array}{l}t,t≤100\\ 2t-100,100<t≤300\end{array}$,且当t>300时,y>500估计在某一医院收治此类病症人数超过200人的概率;
(2)若在(1)中,当t>300时,y与t的关系拟合于曲线$\hat y=a+blnt$,现已取出了10对样本数据(ti,yi)(i=1,2,3,…,10),且$\sum_{i=1}^{10}{ln{t_i}}=70,\sum_{i=1}^{10}{y_i}=6000,\sum_{i=1}^{10}{{y_i}ln{t_i}}$=42500,${\sum_{i=1}^{10}{({ln{t_i}})}^2}$=500,求拟合曲线方程.
(附:线性回归方程$\widehat{y}$=a+bx中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-{n}_{x}^{-}{•}_{y}^{-}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-{{n}_{x}^{-}}^{2}}$,a=$\widehat{y}$-b$\widehat{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知递增等差数列{an}的前n项和为Sn,a3a5=45,S7=49,则数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为(  )
A.$\frac{2n}{2n-1}$B.$\frac{n}{2n-1}$C.$\frac{2n}{2n+1}$D.$\frac{n}{2n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a=({cosx,-\sqrt{3}cosx}),\overrightarrow b=({sin({x+\frac{π}{3}}),cosx})$,函数$f(x)=\overrightarrow a•\overrightarrow b+\frac{{\sqrt{3}}}{2}$.
(1)求函数f(x)的单调递减区间;
(2)若$f({\frac{α}{2}})=\frac{5}{26}+\frac{{\sqrt{3}}}{4}$,且α为第一象限角,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知I是虚数单位,若(2+i)(m-2i)是实数,则实数m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在[-2,2]上的函数f(x)满足f(x)+f(-x)=0,且$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,若f(1-t)+f(1-t2)<0,则实数t的取值范围为[-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从3名男生和3名女生中选出4人分别分别担任辩论赛中的一、二、三、四辩手,其中男生甲不能担任一辩手,那么不同的编队形式有300种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$tan({α-β})=\frac{4}{3}$.
(1)求cos(α-β)的值;
(2)若$0<α<\frac{π}{2},-\frac{π}{2}<β<0,sinβ=-\frac{5}{13}$,求sinα的值.

查看答案和解析>>

同步练习册答案