精英家教网 > 高中数学 > 题目详情

已知,对是方程的两个根,不等式对任意实数恒成立;:函数有两个零点,求使“”为真命题的实数的取值范围。

解析试题分析:利用二次方程的韦达定理求出|x1-x2|,将不等式恒成立转化为求函数的最值,求出命题p为真命题时m的范围;利用二次方程有两个不等根判别式大于0,求出命题Q为真命题时m的范围;P且Q为真转化为两个命题全真,求出m的范围.解:由题设x1+x2=a,x1x2=-2,∴|x1-x2|=
.当a∈[1,2]时,的最小值为3.要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.由已知,得f(x)=3x2+2mx+m+=0的判别式△=4m2-12(m+)=4m2-12m-16>0,得m<-1或m>4.综上,要使“p且q”为真命题,只需P真Q真,即2≤m≤8,m<-1或m>4,解得实数m的取值范围是(4,8].
考点:二次方程的韦达定理
点评:本题考查二次方程的韦达定理、二次方程有根的判断、复合命题的真假与构成其简单命题的真假的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知命题:复数,复数是虚数;命题:关于的方程的两根之差的绝对值小于;若为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题方程上有解,命题函数的值域为,若命题“”是假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

命题p:函数有零点;
命题q:函数是增函数,
若命题是真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:不等式的解集为R,命题上的增函数,若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,若的充分而不必要条件,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设p:实数x满足x2-4ax+3a2<0(其中a≠0),q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
命题p:对任意实数都有恒成立;命题q :关于的方程有实数根.若“p或q”为真命题,“p且q”为假命题,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

命题P:函数内单调递减;命题Q:曲线轴交于不同的两点.
如果“P\/Q”为真且“P/\Q”为假,求a的取值范围.

查看答案和解析>>

同步练习册答案