精英家教网 > 高中数学 > 题目详情
15.若关于x的方程x2-2x+2-a=0的两根分别为x1,x2,分别探究满足下列条件的实数a的取值范围.
(1)x1>0,x2>0;
(2)x1>2,x2<-1.

分析 (1)有两根,所以大前提是△≥0,然后根据韦达定理列出含参数a的不等式;
(2)有两根,所以大前提是△≥0,然后由两根函数值的大小列出含参数a的不等式.

解答 (1)由题意,x1>0,x2>0可知,
△=(-2)2-4×1×(2-a)≥0且x1x2=$\frac{2-a}{1}$>0,
得1≤a<2;
(2)由题意,x1>2,x2<-1可知,
△=(-2)2-4×1×(2-a)≥0且f(2)<0且f(-1)<0,
解得a>5.

点评 考察二次函数的根与系数的关系问题时一定要注意有几个根,注意判别式的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在集合A={m|关于x的方程x2+mx+$\frac{3}{4}$m+1=0无实根}中随机的取一元素x,恰使lgx有意义的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义在R上的函数f(x)=ex+x2+sinx,则曲线y=f(x)在点(0,f(0))处的切线方程是2x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若f(x)=$\frac{1}{3}$x3+x2-$\frac{1}{4}$ax在R上有两个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=|x+1|-2|x-a|(a>0)的图象与x轴围成的三角形的面积大于6,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在△ABC中,AB=2,AC=4,线段CB的垂直平分线交线段AC于D,AD-DB=1,则△BCD的面积为(  )
A.$\frac{7}{10}$B.$\frac{9}{10}$C.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)分别计算:(1-$\frac{1}{4}$),(1-$\frac{1}{4}$)(1-$\frac{1}{9}$),(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)的值.
(2)根据(1)计算,猜想Tn=(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{n}^{2}}$)的表达式;
(3)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.过椭圆$\frac{{x}^{2}}{4}$+y2=1的右焦点做互相垂直的两直线与椭圆分别交于AB,CD.
(1)求证$\frac{1}{|AB|}$+$\frac{1}{|CD|}$为定值;
(2)求四边形ACBD面积的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=ln(2x+1)+$\frac{{x}^{2}+x}{8}$,则曲线在点(x,y)处切线的倾斜角的范围是[$\frac{π}{4}$,$\frac{π}{2}$).

查看答案和解析>>

同步练习册答案