精英家教网 > 高中数学 > 题目详情

【题目】如图1:已知正方形ABCD的边长是2,有一动点M从点B出发沿正方形的边运动,路线是B→C→D→A.设点M经过的路程为x,△ABM的面积为S.

(1)求函数S=f(x)的解析式及其定义域;
(2)在图2中画出函数S=f(x)的图象.

【答案】
(1)解:由题意,当M从B到C时, =x,(0≤x≤2)

当M从C到D时,SABM= ABBC=2(2<x≤4),

当M从D到A时,SABM= AB(6﹣x)=6﹣x(4<x≤6),

函数S=f(x)=

其定义域为{x|0≤x≤6}


(2)解:由(1)的解析式可得:当0≤x≤2时,f(x)=x,值域为[0,2],

当2<x≤4时,f(x)=2,值域为{2}

当4<x≤6时,f(x)=6﹣x,值域为[0,2).

故图象如下:


【解析】(1)由题意,当M从B到C过程,三角形ABM的面积为S随x的增大而增大,当M从C到D过程,三角形ABM的面积为S随x的增大而不变,当M从D到A过程,三角形ABM的面积为S随x的增大而减小.分段函数,可得解析式及其定义域.(2)根据(1)的函数关系式,求值域,作图即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为(

A.3.50分钟
B.3.75分钟
C.4.00分钟
D.4.25分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若变量x,y满足约束条件 ,则z=3x+5y的取值范围是(  )

A. [3,+∞) B. [﹣8,3] C. (﹣∞,9] D. [﹣8,9]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图的程序框图表示求式子1×3×7×15×31×63的值,则判断框内可以填的条件为(

A.i≤31?
B.i≤63?
C.i≥63?
D.i≤127?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆过点,圆的方程为.

(1)求圆的方程;

(2)由圆上的动点向圆作两条切线分别交轴于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:2x≤256且log2x≥
(1)求x的取值范围;
(2)求函数log2 )log2 )的最大值和最小值以及相应的x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x| ≤( x1≤9},集合B={x|log2x<3},集合C={x|x2﹣(2a+1)x+a2+a≤0},U=R
(1)求集合A∩B,(UB)∪A;
(2)若A∪C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 的离心率为 分别为椭圆的左、右顶点, 为右焦点,直线的交点到轴的距离为,过点轴的垂线 上异于点的一点,以为直径作圆.

(1)求的方程;

(2)若直线的另一个交点为,证明:直线与圆相切.

查看答案和解析>>

同步练习册答案