精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是(
A.
B.
C.
D.

【答案】C
【解析】解:∵函数f(x)=kax﹣ax , (a>0,a≠1)在(﹣∞,+∞)上是奇函数
则f(﹣x)+f(x)=0
即(k﹣1)(ax﹣ax)=0
则k=1
又∵函数f(x)=kax﹣ax , (a>0,a≠1)在(﹣∞,+∞)上是增函数
则a>1
则g(x)=loga(x+k)=loga(x+1)
函数图象必过原点,且为增函数
故选C
由函数f(x)=kax﹣ax , (a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=log (﹣3+4x﹣x2)的单调递增区间是(
A.(﹣∞,2)
B.(2,+∞)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex(ax﹣1),g(x)=a(x﹣1),a∈R.
(1)讨论f(x)的单调性;
(2)若有且仅有两个整数xi(i=1,2),使得f(xi)<g(xi)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数g(x)=mx2﹣2mx+n+1(m>0)在区间[0,3]上有最大值4,最小值0.
(1)求函数g(x)的解析式;
(2)设f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]时恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1:已知正方形ABCD的边长是2,有一动点M从点B出发沿正方形的边运动,路线是B→C→D→A.设点M经过的路程为x,△ABM的面积为S.

(1)求函数S=f(x)的解析式及其定义域;
(2)在图2中画出函数S=f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数 的定义域为A,g(x)=lg[(x﹣a﹣1)(2a﹣x)](a<1)的定义域为B,求
(1)A,B;
(2)若BA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数),.

(1)若的极值点,且直线分别与函数的图象交于,求两点间的最短距离;

(2)若时,函数的图象恒在的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));

租用单车数量 (千辆)

2

3

4

5

8

每天一辆车平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

直角坐标系中,直线为参数),曲线为参数),以该直角坐标系的原点为极点, 轴的非负半轴为极轴建立极坐标系,曲线的方程为.

(1)分别求曲线的极坐标方程和曲线的直角坐标方程;

(2)设直线交曲线两点,直线交曲线两点,求的长.

查看答案和解析>>

同步练习册答案