精英家教网 > 高中数学 > 题目详情
(2010•温州二模)若函数f(x)=sinx+acosx在区间[-
π
3
3
]上单调递增,则a的值为(  )
分析:f(x)=sinx+acosx⇒f(x)=
1+a2
sin(x+φ)⇒T=2π,函数f(x)=sinx+acosx在区间[-
π
3
3
]上单调递增⇒f(
2
3
π
)=
1+a2
,从而可求得a的值.
解答:解:∵f(x)=sinx+acosx=
1+a2
sin(x+φ),
∴其周期T=2π,又
2
3
π
-(-
π
3
)=π,
∴f(x)max=f(
2
3
π
)=sin
2
3
π
+acos
2
3
π
=
1+a2
,即
3
2
-
a
2
=
1+a2
,①
将①等号两端分别平方得:
3
4
+
a2
4
-
3
2
a
=1+a2,即
3
4
a2 +
3
2
a
+
1
4
=0,
解得a=-
3
3

故选D.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,难点在于利用辅助角公式将f(x)=sinx+acosx转化为f(x)=
1+a2
sin(x+φ)后,对f(
2
3
π
)=sin
2
3
π
+acos
2
3
π
=
1+a2
的理解与应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•温州二模)设向量
a
=(1,
3
)
b
=(cosθ,sinθ)
,若
a
b
,则tanθ=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)已知f′(x)是函数f(x)=
13
x3-mx2+(m2-1)x+n
的导函数,若函数y=f[f′(x)]在区间[m,m+1]上单调递减,则实数m的范围是
-1≤m≤0
-1≤m≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)设AD是半径为5的半圆O的直径(如图),B,C是半圆上两点,已知AB=BC=
10

(1)求cos∠AOC的值.
(2)求
DC
DB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)已知数列{an}的前n项和为SnSn=
1,n=1
n2-3n+4,n≥
2

(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得am,am+1,am+2成等比数列,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)设复数z的共轭复数为
.
z
,若(2+i)z=3-i,则z•
.
z
的值为(  )

查看答案和解析>>

同步练习册答案