【题目】已知椭圆的离心率为,椭圆与轴交于 两点,且.
(1)求椭圆的方程;
(2)设点是椭圆上的一个动点,且直线与直线分别交于 两点.是否存在点使得以 为直径的圆经过点?若存在,求出点的横坐标;若不存在,说明理由.
【答案】(1);(2)点不存在.
【解析】分析:(1)根据椭圆的几何性质知,即,再由离心率得,从而可得,得椭圆方程;
(2)假设点P存在,并设,写出PA的方程,求出M点坐标,同理得N点坐标,求出MN的中点坐标,即圆心坐标,利用圆过点D得一关于的等式,把P点坐标代入椭圆方程后也刚才的等式联立解得,注意的范围,即可知存在不存在.
详解:(1)由已知,得知,
又因为离心率为,所以.
因为,所以,
所以椭圆的标准方程为.
(2)假设存在.
设
由已知可得,
所以的直线方程为,
的直线方程为,
令,分别可得,,
所以,
线段的中点,
若以为直径的圆经过点D(2,0),
则,
因为点在椭圆上,所以,代入化简得,
所以, 而,矛盾,
所以这样的点不存在.
科目:高中数学 来源: 题型:
【题目】双曲线 的左、右焦点分别为,过作倾斜角为的直线与轴和双曲线的右支分别交于两点,若点平分线段,则该双曲线的离心率是( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)①建立月总成本y与月产量x之间的回归方程;
②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?
(均精确到0.001)
附注:①参考数据:,
,
②参考公式:相关系数,
回归方程中斜率和截距的最小二乘估计公式分别为:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】武汉市摄影协会准备在2020年1月举办主题为“我们都是追梦人”摄影图片展,通过平常人的镜头记录国强民富的幸福生活,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如图:
(1)求频率直方图中的值,并根据频率直方图,求这100位摄影者年龄的中位数;
(2)为了展示不同年龄作者眼中的幸福生活,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.
①在答题卡上的统计表中填出每组相应抽取的人数:
年龄 | |||||
人数 |
②若从年龄在的作者中选出2人把这些图片和故事整理成册,求这2人中至少有1人的年龄在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】苹果是人们日常生活中常见的营养型水果.某地水果批发市场销售来自5个不同产地的富士苹果,各产地的包装规格相同,它们的批发价格(元/箱)和市场份额如下:
产地 | |||||
批发价格 | |||||
市场份额 |
市场份额亦称“市场占有率”.指某一产品的销售量在市场同类产品中所占比重.
(1)从该地批发市场销售的富士苹果中随机抽取一箱,求该箱苹果价格低于元的概率;
(2)按市场份额进行分层抽样,随机抽取箱富士苹果进行检验,
①从产地共抽取箱,求的值;
②从这箱苹果中随机抽取两箱进行等级检验,求两箱产地不同的概率;
(3)由于受种植规模和苹果品质的影响,预计明年产地的市场份额将增加,产地的市场份额将减少,其它产地的市场份额不变,苹果销售价格也不变(不考虑其它因素).设今年苹果的平均批发价为每箱元,明年苹果的平均批发价为每箱元,比较的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求证:数列{an-1}是等比数列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果对任意n∈N*,都有bn+t≤t2,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年圣诞节,各地的餐馆都出现了用餐需预定的现象,致使--些人在没有预定的情况下难以找到用餐的餐馆,针对这种现象,专家对人们“用餐地点"以及“性别”作出调查,得到的情况如下表所示:
在家用餐 | 在餐馆用餐 | 总计 | |
女性 | |||
男性 | |||
总计 |
(1)完成上述列联表;
(2)根据表中的数据,试通过计算判断是否有的把握说明“用餐地点”与“性别"有关;
(3)若在接受调查的所有人男性中按照“用餐地点”进行分层抽样,随机抽取人,再在人中抽取人赠送餐馆用餐券,记收到餐馆用餐券的男性中在餐馆用餐的人数为,求的分布列和数学期望.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,直角梯形中,,,,四边形为矩形,.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com