精英家教网 > 高中数学 > 题目详情

【题目】双曲线 的左、右焦点分别为作倾斜角为的直线与轴和双曲线的右支分别交于两点,若点平分线段则该双曲线的离心率是

A. B. C. 2 D.

【答案】B

【解析】双曲线 的左焦点,直线的方程为,令,则,即,因为平分线段,根据中点坐标公式可得 ,代入双曲线方程,可得由于,化简可得,解得解得故选B.

【方法点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.本题是利用点到直线的距离等于圆半径构造出关于的等式,最后解出的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长是短轴长的倍,且过点

(1)求椭圆的标准方程;

(2)若的顶点在椭圆上, 所在的直线斜率为 所在的直线斜率为,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,

直线与以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.

)求椭圆C的方程;

)设P为椭圆C上一点,若过点的直线与椭圆C相交于不同的两点ST

满足O为坐标原点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100)进行统计.请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:

分组

频数

频率

50.5~60.5

4

0.08

60.5~70.5

0.16

70.5~80.5

10

80.5~90.5

16

0.32

90.5~100.5

合计

50

(Ⅰ)填充频率分布表的空格(将答案直接填在表格内);

(Ⅱ)补全频数条形图;

(Ⅲ)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现.某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:

用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.

(1)请你列出抽到的10个样本的评分数据;

(2)计算所抽到的10个样本的均值和方差

(3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为“级”.试应用样本估计总体的思想,估计该地区满意度等级为“级”的用户所占的百分比是多少?(精确到)

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为正方形,且底面的平面与侧面的交线为且满足表示的面积.

(1)证明: 平面

(2)当时,二面角的余弦值为的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:度),以 分组的频率分布直方图如图示.

(Ⅰ)求直方图中的值;

(Ⅱ)求月平均用电量的众数和中位数;

(Ⅲ)在月平均用电量为的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】编号分别为16名篮球运动员在某次训练比赛中的得分记录如下:

运动员编号

得分

15

35

21

28

25

36

18

34

运动员编号

得分

17

26

25

33

22

12

31

38

(1)将得分在对应区间内的人数填入相应的空格:

区间

[10,20

[20,30)

[30,40]

人数

(2)从得分在区间[20,30)内的运动员中随机抽取2.

()用运动员编号列出所有可能的抽取结果;

()求这2人得分之和大于50的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,焦点在轴上的椭圆经过点,其中为椭圆的离心率.过点作斜率为的直线交椭圆两点(轴下方).

(1)求椭圆的方程;

(2)过原点且平行于的直线交椭圆于点 ,求的值;

(3)记直线轴的交点为.若,求直线的斜率.

查看答案和解析>>

同步练习册答案