【题目】已知函数.
(I)求曲线在点处的切线方程;
(Ⅱ)当时,求证:函数存在极小值;
(Ⅲ)请直接写出函数的零点个数.
【答案】(1);(2)证明见解析;(3)当或时,函数有一个零点 ;当且时,函数有两个零点.
【解析】
(1) 求出函数f(x)的导数,可得切线的斜率和切点,可得切线的方程;(2),说明有可变零点即可;(3)由题意可得函数的零点个数.
(1)的定义域为
因为
所以切点的坐标为
因为
所以切线的斜率,
所以切线的方程为
(2)方法一:
令
因为且,
所以,,
从而得到在上恒成立
所以在上单调递增且,
所以在上递减,在递增;
所以时,取得极小值,问题得证
方法二:
因为
当时,
当时, ,所以
当时, ,所以
所以在上递减,在递增;
所以时,函数取得极小值,问题得证.
(3)当或时,函数有一个零点 ;
当且
科目:高中数学 来源: 题型:
【题目】定义:圆心到直线的距离与圆的半径之比称为“直线关于圆的距离比”.
(1)设圆求过点P的直线关于圆的距离比的直线方程;
(2)若圆与轴相切于点A且直线关于圆C的距离比求出圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校实行选科走班制度,张毅同学的选择是地理、生物、政治这三科,且生物在层班级.该校周一上午选科走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法的种数为( )
第一节 | 第二节 | 第三节 | 第四节 |
地理1班 | 化学层3班 | 地理2班 | 化学层4班 |
生物层1班 | 化学层2班 | 生物层2班 | 历史层1班 |
物理层1班 | 生物层3班 | 物理层2班 | 生物层4班 |
物理层2班 | 生物层1班 | 物理层1班 | 物理层4班 |
政治1班 | 物理A层3班 | 政治2班 | 政治3班 |
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,两个焦点与短轴一个顶点构成等腰直角三角形,过点且与x轴不重合的直线l与椭圆交于M,N不同的两点.
(Ⅰ)求椭圆P的方程;
(Ⅱ)当AM与MN垂直时,求AM的长;
(Ⅲ)若过点P且平行于AM的直线交直线于点Q,求证:直线NQ恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】首项为O的无穷数列同时满足下面两个条件:
①;②
(1)请直接写出的所有可能值;
(2)记,若对任意成立,求的通项公式;
(3)对于给定的正整数,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,直线()与椭圆交于,两点(点在轴的上方).
(1)若,求的面积;
(2)是否存在实数使得以线段为直径的圆恰好经过坐标原点?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,
(Ⅰ)设分别为的中点,求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com