分析 根据题意画出图形,结合图形,利用平面向量的线性表示与数量积运算,即可得出正确的结果.
解答
解:如图所示,
等边△ABC中,D为BC的中点,
∴$\overrightarrow{DC}$=$\frac{1}{2}$$\overrightarrow{BC}$,
又$\overrightarrow{CE}$=$\frac{1}{3}$$\overrightarrow{CA}$,
∴$\overrightarrow{DE}$$•\overrightarrow{CB}$=($\overrightarrow{DC}$+$\overrightarrow{CE}$)•$\overrightarrow{CB}$
=$\overrightarrow{DC}$•$\overrightarrow{CB}$+$\overrightarrow{CE}$•$\overrightarrow{CB}$
=$\frac{1}{2}$$\overrightarrow{BC}$•$\overrightarrow{CB}$+$\frac{1}{3}$$\overrightarrow{CA}$•$\overrightarrow{CB}$
=-$\frac{1}{2}$${|\overrightarrow{CB}|}^{2}$+$\frac{1}{3}$×|$\overrightarrow{CA}$|×|$\overrightarrow{CB}$|cos60°
=-$\frac{1}{3}$${|\overrightarrow{CB}|}^{2}$.
故答案为:-$\frac{1}{3}$${|\overrightarrow{CB}|}^{2}$.
点评 本题考查了平面向量的线性表示与数量积的运算问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{5}{e}$,2] | B. | [-$\frac{5}{2e}$,-$\frac{8}{{3{e^2}}}$) | C. | [-$\frac{1}{2}$,-$\frac{8}{{3{e^2}}}$) | D. | [-4e,-$\frac{5}{2e}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$≤A≤$\frac{5π}{6}$ | B. | $\frac{π}{6}$≤A$≤\frac{π}{2}$ | C. | $\frac{π}{6}$≤B$≤\frac{5π}{6}$ | D. | $\frac{π}{6}$≤B$<\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x,0,1,2} | B. | {x,0,1} | C. | {x,0,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{10}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com