精英家教网 > 高中数学 > 题目详情
14.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲乙两个盒子中各取出1个球,球的标号分别记做a,b,每个球被取出的可能想相等.
(1)求a+b能被3整除的概率;
(2)若|a-b|≤1则中奖,求中奖的概率.

分析 (1)根据古典概型的概率公式先求出所有事件的个数,然后利用列举法求出a+b能被3整除的事件个数进行求解即可.
(2)利用列举法求出满足|a-b|≤1的事件个数,进行求解即可.

解答 解:(1)从甲乙两个盒子中各取一个球,每个球被取出的可能性相等的结果有:
(1,1)(1,2)(1,3)(1,4),
(2,1)(2,2)(2,3)(2,4),
(3,1)(3,2)(3,3)(3,4),
(4,1)(4,2)(4,3)(4,4),16种结果,每种结果出现的可能性相等,属于古典概率
记“取出的两个球上标号之和能被3整除”的事件为A,则A的结果有(1,2)(2,1)(2,4)(3,3)(4,2)5种结果,
则a+b能被3整除的概率P(A)=$\frac{5}{16}$.
(2)而满足|a-b|≤1的数对(a,b)有(1,1),(1,2),(2,1)、(2,2),(2,3),
(3,2),(3,3),(3,4),(4,3),(4,4),共计10个,
则中奖的概率P=$\frac{10}{16}=\frac{5}{8}$.

点评 本题主要考查古典概型的概率的计算,根据古典概型的概率公式,利用列举法进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若四面体的三视图如图所示,求该四面体的外接球的表面积41π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=$\frac{π}{4}$处取得最小值,则函数y=|f($\frac{3π}{4}$-x)|是(  )
A.奇函数且它的图象关于点(π,0)对称
B.奇函数且它的图象关于点($\frac{3π}{4}$,0)对称
C.偶函数且它的图象关于直线x=π对称
D.偶函数且它的图象关于直线x=$\frac{3π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某市有甲、乙、丙、丁四个某种品牌的牛奶代理商,某天早上送货员小张从工厂出发依次送货至各个代理处,然后再回到工厂,小张的不同的送货方式共有(  )
A.12种B.16种C.20种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过抛物线C:y2=2px(p>0)的焦点且斜率为2的直线与C交于A、B两点,以AB为直径的圆与C的准线有公共点M,若点M的纵坐标为2,则p的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l1:2x+y+2=0和l2:3x+y+1=0,设直线l1和l2的交点为P
(1)求过点P且与直线l3:2x+3y+5=0垂直的直线方程;
(2)直线l过点P且在两坐标轴上的截距之和为-6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知空间四边形ABCD,连接AC,BD,设M,G分别是BC,CD的中点,化简下列各表达式:
(1)$\overrightarrow{AB}+\frac{1}{2}(\overrightarrow{BD}+\overrightarrow{BC})$
(2)$\overrightarrow{AD}-\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,已知正方体(图1)面对角线长为a,沿对角面将其切割成两块,拼成图2所示的几何体,那么拼成后的几何体的全面积为$({2+\sqrt{2}}){a^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一种掷硬币走跳棋的游戏:棋盘上有第0、1、2、…、100,共101点,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次,若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站,直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束,已知硬币出现正、反面的概率相同,设棋子跳到第n站时的概率为Pn
(1)求P1、P2、P3
(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列;
(3)求玩该游戏获胜的概率.

查看答案和解析>>

同步练习册答案