分析 (1)根据古典概型的概率公式先求出所有事件的个数,然后利用列举法求出a+b能被3整除的事件个数进行求解即可.
(2)利用列举法求出满足|a-b|≤1的事件个数,进行求解即可.
解答 解:(1)从甲乙两个盒子中各取一个球,每个球被取出的可能性相等的结果有:
(1,1)(1,2)(1,3)(1,4),
(2,1)(2,2)(2,3)(2,4),
(3,1)(3,2)(3,3)(3,4),
(4,1)(4,2)(4,3)(4,4),16种结果,每种结果出现的可能性相等,属于古典概率
记“取出的两个球上标号之和能被3整除”的事件为A,则A的结果有(1,2)(2,1)(2,4)(3,3)(4,2)5种结果,
则a+b能被3整除的概率P(A)=$\frac{5}{16}$.
(2)而满足|a-b|≤1的数对(a,b)有(1,1),(1,2),(2,1)、(2,2),(2,3),
(3,2),(3,3),(3,4),(4,3),(4,4),共计10个,
则中奖的概率P=$\frac{10}{16}=\frac{5}{8}$.
点评 本题主要考查古典概型的概率的计算,根据古典概型的概率公式,利用列举法进行求解是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 奇函数且它的图象关于点(π,0)对称 | |
| B. | 奇函数且它的图象关于点($\frac{3π}{4}$,0)对称 | |
| C. | 偶函数且它的图象关于直线x=π对称 | |
| D. | 偶函数且它的图象关于直线x=$\frac{3π}{4}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12种 | B. | 16种 | C. | 20种 | D. | 24种 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com