精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-
1
2
x2
+bx+c.
(1)若f(x)有极值,求b的取值范围;
(2)若f(x)在x=1处取得极值,当x∈[-1,2]时,则f(x)<c2恒成立,求c的取值范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(1)f′(x)=3x2-x+b.f(x)有极值?f′(x)=0由两个不相等的实数根?△=1-12b>0,解得即可.
(2)当x∈[-1,2]时,则f(x)<c2恒成立?f(x)max<c2,利用导数求出f(x)max即可解出.
解答: 解:(1)f′(x)=3x2-x+b.令f′(x)=0,
由△=1-12b>0,解得b
1
12

(2)∵f(x)在x=1处取得极值,
∴f′(1)=0,∴3-1+b=0,得b=-2.
∴f′(x)=3x2-x-2.
令f′(x)=0,得x1=-
2
3
x2=1

列表如下:
 x [-1,-
2
3
)
 -
2
3
 (-
2
3
,1)
 1 (1,2]
 f′(x)+ 0- 0+
 f(x)单调递增 极大值 单调递减 极小值 单调递增
由表格可知:当x=-
2
3
时,函数f(x)取得极大值f(-
2
3
)
=
22
27
+c
,而区间端点处的f(2)=2+c,
∴函数f(x)的最大值为2+c.
∴2+c<c2,解得c>2或c<-1. 
∴c的取值范围是c>2或c<-1.
点评:本题考查了利用导数研究函数的单调性极值与最值,考查了恒成立问题的等价转化方法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(1)如果X=8,求乙组同学植树棵数的平均数和方差;
(2)如果X=9,求乙组同学植树棵数的中位数和众数;
(3)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某盐场有甲、乙两套设备包装食盐,在自动包装传送带上,每隔3分钟抽一包称其重量是否合格,分别记录数据如下:
甲套设备:504,510,505,490,485,485,515,510,496,500;
乙套设备:496,502,501,499,505,498,499,498,497,505.
(1)试确定这是何种抽样方法?
(2)比较甲、乙两套设备的平均值与方差,说明哪套包装设备误差较少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx.
(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(Ⅱ)当a>0时,讨论f(x)在(
1
2
,  2)
的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设极坐标方程为ρ=3的圆上的点到参数方程为
x=t+2
y=2t-1
的直线的距离为d,求d的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求过点P(1,2)且在两坐标轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率是
3
2
,长轴长是为4
(1)求椭圆的方程;
(2)设过(0,-2)的直线L与曲线C交于A、B两点,以线段AB为直径作圆.试问:该圆能否经过坐标原点?若能,请写出此时直线L的方程,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2×1010+a(0≤a<11)能被11整除,则实数a的值为
 

查看答案和解析>>

同步练习册答案