精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足:f′(x)>1-f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式exf(x)>ex+5(其中e为自然对数的底数)的解集为
 
考点:导数的乘法与除法法则
专题:函数的性质及应用
分析:构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解
解答: 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f'(x)>1-f(x),
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)>ex+5,
∴g(x)>5,
又∵g(0)=e0f(0)-e0=6-1=5,
∴g(x)>g(0),
∴x>0,
∴不等式的解集为(0,+∞)
故答案为:(0,+∞).
点评:本题考查函数的导数与单调性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+2+(-1)nan=1.记sn是数列{an}的前n项和,则s100=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

近年来,政府提倡低碳减排,某班同学利用寒假在两个小区逐户调查人们的生活习惯是否符合低碳观念.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.数据如下表(计算过程把频率当成概率).B小区低碳族非低碳族频率p0.80.2A小区低碳族非低碳族频率p0.50.5
A小区低碳族非低碳族
频率 p0.50.5
小区低碳族非低碳族
频率 p0.80.2
(Ⅰ) 如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;
(Ⅱ)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A小区中任选3个人,记X表示3个人中低碳族人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,3),B(-2,-1).若直线l:y=k(x-2)+1与线段AB相交,则k的取值范围是(  )
A、[
1
2
,+∞)
B、(-∞,-2]
C、(-∞,-2]∪[
1
2
,+∞)
D、[-2,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知P是函数f(x)=lnx(x>1)的图象上的动点,该图象在点p处的切线l交x轴于点M.过点P作l的垂线交x轴于点N,设线段MN的中点的横坐标为t,则t的最大值是(  )
A、
1
e2
B、
e
2
+
1
2e
C、
3
4
e
+
1
4
e
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对边的长分别为a、b、c,且cos2B+cosB+cos(A-C)=1.
(Ⅰ)证明:a、b、c成等比数列;
(Ⅱ)若a+c=b,cosB=
3
4
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意实数a∈[
2
,+∞),点P(a,2-a)与圆C:x2+y2-4y=0的位置关系是(  )
A、点P在圆上
B、点P在圆外
C、点P在圆内 或圆上
D、点P在圆外或圆上

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
1-x2
+lg(2x+1)的定义域为(  )
A、(-
1
2
,1)
B、(-
1
2
,+∞)
C、(-
1
2
1
2
D、(-∞,-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

27 
2
3
+(
1
4
 log2
3
-log8
1
4
=
 

查看答案和解析>>

同步练习册答案