精英家教网 > 高中数学 > 题目详情
矩形ABCD的中心在坐标原点,边AB与x轴平行,AB=8,BC=6.E,F,G,H分别是矩形四条边的中点,R,S,T是线段OF的四等分点,R′,S′,T′是线段CF的四等分点.设直线ER与GR′,ES与GS′,ET与GT′的交点依次为L,M,N.
(1)求以HF为长轴,以EG为短轴的椭圆Q的方程;
(2)根据条件可判定点L,M,N都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段OF的n(n∈N+,n≥2)等分点从左向右依次为Ri(i=1,2,…,n-1),线段CF的n等分点从上向下依次为Ti(i=1,2,…,n-1),那么直线ERi(i=1,2,…,n-1)与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
考点:直线与圆锥曲线的关系,椭圆的标准方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)由题意,2a=AB=8,2b=BC=6,求出a,b,即可得出椭圆Q的方程;
(2)确定直线ER的方程、直线GR′的方程,联立可解得L的坐标,代入椭圆方程,即可得证.
(3)由(2)知,直线ERi(i=1,2,…,n-1)与直线GTi(i=1,2,…,n-1)的交点一定在椭圆Q上.
解答: 解:(1)由题意,2a=AB=8,2b=BC=6,
∴a=4,b=3,
∴椭圆Q的方程为
x2
16
+
y2
9
=1

(2)由题意知E(0,-3),R(1,0),G(0,3),R(4,
9
4
).
可得直线ER的方程为y=3x-3,直线GR′的方程为y=-
3
16
x+3

联立可解得L(
96
51
135
51
)
,代入椭圆方程
x2
16
+
y2
9
=1
成立,得证.
(3)由(2)知,直线ERi(i=1,2,…,n-1)与直线GTi(i=1,2,…,n-1)的交点一定在椭圆Q上.
点评:本题考查椭圆的标准方程,考查直线焦点坐标的求法,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,a1=2,q=3,则an等于(  )
A、6
B、3×2n-1
C、2×3n-1
D、6n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2an-2(n=1,2,3…),数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(Ⅰ)求数列{an},{bn}的通项an和bn
(Ⅱ) 设cn=an•bn,求数列{cn}的前n项和Tn,并求满足Tn<55的最大正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,∠BCC1=
π
3
,AB=CC1=2.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(Ⅲ)在(Ⅱ)的条件下,求AE和平面ABC所成角正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
9
-
y2
16
=1
的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,求点P到x轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=logax(a>0,且a≠1)的图象上所有的点向左平移2个单位长度,再向下平移1个单位长度后得到函数y=f(x)的图象,已知函数y=f(x)的图象经过定点A(m,n).若方程kx2+mx+n=0有且仅有一个零点,则实数k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式|x-m|+|x-1|≥2m+3的解集是R,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的坐标分别是A(1,0)、B(3,0)、C(3,4)则该三角形外接圆方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(3,0)和点(4,
3
)的直线的倾斜角是(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

同步练习册答案