精英家教网 > 高中数学 > 题目详情
某公司经销某种产品,每件产品的成本为6元,预计当每件产品的售价为元()时,一年的销售量为万件。
(1)求公司一年的利润y(万元)与每件产品的售价x的函数关系;
(2)当每件产品的售价为多少时,公司的一年的利润y最大,求出y最大值.
(1) (),(2),y=27

试题分析:(1)一年的利润为一年的销售量与每件产品的利润的乘积,而每件产品的利润为每件产品的售价与每件产品的成本之差.所以.注意函数解析式必须明确函数定义域.(2)由于函数是三次函数,所以利用导数求最值. 因为,所以由0得,因此当时y为增函数,当时y为减函数,又,当时y为减函数,∴当时,(万元)
(1) ()   6分
(2)                    8分
0,          10分
时y为增函数,当时y为减函数    12分
,当时y为减函数
∴当时,(万元)          14分
答:当每件产品的售价为9元时,一年的利润最大为27万元。      15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率与日产量(件)之间近似地满足关系式(日产品废品率).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润日正品赢利额日废品亏损额)
(1)将该车间日利润(千元)表示为日产量(件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数
(Ⅰ)当时,
(1)若,求函数的单调区间;
(2)若关于的不等式在区间上有解,求的取值范围;
(Ⅱ)已知曲线在其图象上的两点)处的切线分别为.若直线平行,试探究点与点的关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为函数图象上一点,O为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数m的取值范围;
(2)设,若对任意恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:f′′(x)是函数y=f(x)的导数f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有′拐点′;任何一个三次函数都有对称中心,且‘拐点’就是对称中心”.请你将这一发现作为条件,则函数f(x)=x3-3x2+3x的对称中心为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=(  )
A.﹣4B.﹣2C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个如图所示的不规则形铁片,其缺口边界是口宽4分米,深2分米(顶点至两端点所在直线的距离)的抛物线形的一部分,现要将其缺口边界裁剪为等腰梯形.
(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数图象与直线相切,切点横坐标为.
(1)求函数的表达式和直线的方程;(2)求函数的单调区间;
(3)若不等式定义域内的任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案