| A. | -4 | B. | 4 | C. | 0 | D. | 7 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答
解:作出不等式对应的平面区域,
设z=x+3y,得y=-$\frac{1}{3}$x+$\frac{z}{3}$,
平移直线y=-$\frac{1}{3}$x+$\frac{z}{3}$,由图象可知当直线
y=-$\frac{1}{3}$x+$\frac{z}{3}$经过点C时,直线的截距最大,此时z最大.
由 $\left\{\begin{array}{l}{x=y}\\{x+y=2}\end{array}\right.$,得 C(1,1),
此时z的最大值为z=1+3×1=4;
故选B.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:选择题
| f(1)=-2 | f(1.5)=0.625 |
| f(1.25)=-0.984 | f(1.375)=-0.260 |
| f(1.438)=0.165 | f(1.4065)=-0.052 |
| A. | 1.2 | B. | 1.3 | C. | 1.4 | D. | 1.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p1,p4 | B. | p2,p4 | C. | p1,p3 | D. | p3,p4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (1,+∞) | C. | (3,+∞) | D. | (-∞,1)∪(3,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com