精英家教网 > 高中数学 > 题目详情

定义在[﹣1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[﹣1,1],a+b≠0时,有
(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A,B两点的坐标;若不存在,请说明理由并加以证明.
(2)若对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.

(1)详见解析;(2)

解析试题分析:(1)假设函数的图象上存在两个不同的点,使直线恰好与轴垂直,设的横坐标为,且,然后证得;推出函数上是增函数,这与这与假设矛盾,可得假设不成立,命题得证.
(2)由题意可得函数的最大值小于或等于,结合(1)的过程,可求出其最大值,即整理的:.令关于的一次函数g(a)=m2+2am,则有,由此求得m的范围.

试题解析:解:(1)假设函数f(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,
则A、B两点的纵坐标相同,设它们的横坐标分别为 x1和x2,且x1<x2
则f(x1)﹣f(x2)=f(x1)+f(﹣x2)=[x1+(﹣x2)].
由于 >0,且[x1+(﹣x2)]<0,∴f(x1)﹣f(x2)<0,
故函数f(x)在[﹣1,1]上是增函数.
这与假设矛盾,故假设不成立,即 函数f(x)的图象上不存在两个不同的点A,B,使直线AB恰好与y轴垂直.
(2)由于 对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,
∴故函数f(x)的最大值小于或等于2(m2+2am+1).
由于由(1)可得,函数f(x)是[﹣1,1]的增函数,故函数f(x)的最大值为f(1)=2,
∴2(m2+2am+1)≥2,即 m2+2am≥0.
令关于a的一次函数g(a)=m2+2am,则有
解得 m≤﹣2,或m≥2,或 m=0,故所求的m的范围是{m|m≤﹣2,或m≥2,或 m=0}.
考点:1.反证法;2.函数的恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数的二次项系数为,且不等式的解集为(1,3).
⑴若方程有两个相等实数根,求的解析式.
⑵若的最大值为正数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数在区间上的最小值;
(2)设,其中,判断方程在区间 上的解的个数(其中为无理数,约等于且有).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本(万元)关于月产量(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:
,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.
(1)当时,判断该项举措能否获利?如果能获利,求出最大利润;
如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=在区间[-1,1]上是增函数.
(1)求实数a的值组成的集合A;
(2)设x1、x2是关于x的方程f(x)=的两个相异实根,若对任意a∈A及t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=2-x2+ax+1在区间(-∞,3)内递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:lg-lg+lg12.5-log89·log278;

查看答案和解析>>

同步练习册答案