精英家教网 > 高中数学 > 题目详情

【题目】已知向量m=(cosx,-1),n=,函数f(x)=(m+n)·m.

(1)求函数f(x)的最小正周期;

(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=1,c=,且f(A)恰是函数f(x)在上的最大值,求A,b和△ABC的面积.

【答案】见解析

【解析】 (1)f(x)=(m+n)·m

=cos2x+sinxcosx+

sin2x+

cos2x+sin2x+2

=sin+2.

因为ω=2,所以最小正周期T=π.

(2)(1)f(x)=sin+2,

当x∈时,≤2x+.

由正弦函数图象可知,当2x+时,f(x)取得最大值3,又A为锐角,

所以2A+,A=.

由余弦定理a2=b2+c2-2bccosA,

得1=b2+3-2××b×cos

所以b=1或b=2,经检验均符合题意.

从而当b=1时,△ABC的面积

S=××1×sin

当b=2时,△ABC的面积

S=××2×sin.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-+a(2-ln x)(a>0),求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的直观图和三视图如下:

(1)求证: 底面

(2)求三棱锥的体积;

(3)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂36名工人的年龄数据如下表.

工人编号 年龄

工人编号 年龄

工人编号 年龄

工人编号 年龄

 1   40

 10   36

 19   27

 28   34

 2   44

 11   31

 20   43

 29   39

 3   40

 12   38

 21   41

 30   43

 4   41

 13   39

 22   37

 31   38

 5   33

 14   43

 23   34

 32   42

 6   40

 15   45

 24   42

 33   53

 7   45

 16   39

 25   37

 34   37

 8   42

 17   38

 26   44

 35   49

 9   43

 18   36

 27   42

 36   39

(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;

(2)计算(1)中样本的均值x和方差s2

(3)36名工人中年龄在之间有多少人?所占的百分比是多少(精确到0.01%)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:

月份x

1

2

3

4

5

y(万盒)

4

4

5

6

6

(1)该同学为了求出关于的线性回归方程 ,根据表中数据已经正确计算出=0.6,试求出的值,并估计该厂6月份生产的甲胶囊产量数;

(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题,记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若满足①;②当,且时,都有;③当,且时, ,则称为“偏对函数”.现给出四个函数: . 则其中是“偏对称函数”的函数个数为( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个几何体的主视图与左视图是全等的长方形,边长分别是,如图所示,俯视图是一个边长为的正方形.

(1)求该几何体的表面积;

(2)求该几何体的外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调区间;

(2)若函数有两个零点,求满足条件的最小正整数的值;

(3)若方程,有两个不相等的实数根,比较与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数上是减函数,求实数a的最小值;

(Ⅲ)若,,使成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案