精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥的直观图和三视图如下:

(1)求证: 底面

(2)求三棱锥的体积;

(3)求三棱锥的侧面积.

【答案】(1)详见解析;(2)8;(3) .

【解析】试题分析:(1)证明线面垂直,只需证明直线垂直于平面内的两条相交直线;(2) ∵底面.∴是三棱锥的高,根据三棱锥的体积公式求得;(3)根据边长求得侧面三角形的形状,分别求出面积相加即可.

试题解析:(1)证明:由直观图和三视图知:

,又 平面 平面.

所以: 底面.

(2)∵底面.∴是三棱锥的高

∴三棱锥的体积:

(3)在中:

∴三棱锥的侧面积

点睛: 判定直线和平面垂直的方法:①定义法.②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.平面与平面垂直的判定方法:①定义法.②利用判定定理:一个平面过另一个平面的一条垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2016年夏季奥运会将在巴西里约热内卢举行,体育频道为了解某地区关于

奥运会直播的收视情况,随机抽取了名观众进行调查,其中岁以上的观众有名,下面是根据

调查结果绘制的观众准备平均每天收看奥运会直播时间的频率分布表(时间:分钟)

分组







频率







将每天准备收看奥运会直播的时间不低于分钟的观众称为奥运迷,已知奥运迷中有

以上的观众.

1)根据已知条件完成下面的列联表,并据此资料你是否有以上的把握认为奥运迷与年龄

有关?


奥运迷

奥运迷

合计

岁以下




岁以上




合计




2)将每天准备收看奥运会直播不低于分钟的观众称为超级奥运迷,已知超级奥运迷中有

岁以上的观众,若从超级奥运迷中任意选取人,求至少有岁以上的观众的概率.

附:







查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根据以上数据,估计该企业得分大于45分的员工人数;

(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:

“满意”的人数

“不满意”的人数

总计

16

14

总计

30

(3)根据上述表中数据,利用独立性检验的方法判断,能否有99%的把握认为该企业员工“性别”与“工作是否满意”有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩掷骰子游戏,甲掷出的点数记为,乙掷出的点数记为

若关于的一元二次方程有两个不相等的实数根时甲胜;方程有

两个相等的实数根时为“和”;方程没有实数根时乙胜.

(1)列出甲、乙两人“和”的各种情形;

(2)求甲胜的概率.

必要时可使用此表格

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

)若函数上递减, 求实数的取值范围;

)当时,求的最小值的最大值;

)设,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.

(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;

(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.

答对题目数

[0,8)

8

9

10

2

13

12

8

3

37

16

9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示四边形ABEFABCD都是直角梯形∠BAD=∠FAB=

90°BC ADBE FA,G,H分别为FA,FD的中点.

(1)证明四边形BCHG是平行四边形.

(2)CDFE四点是否共面为什么

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量m=(cosx,-1),n=,函数f(x)=(m+n)·m.

(1)求函数f(x)的最小正周期;

(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=1,c=,且f(A)恰是函数f(x)在上的最大值,求A,b和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差不为零的等差数列{an}中,已知a1=1,且a1,a2,a5依次成等比数列.数列{bn}满足bn+1=2bn-1,且b1=3.

(1)求{an},{bn}的通项公式;

(2)设数列的前n项和为Sn,试比较Sn与1-的大小.

查看答案和解析>>

同步练习册答案