精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x2+bx+c,若方程f(x)=x有两个根x1,x2,并且|x1-x2|>2,则方程f(f(x))=x的根的个数为(  )
A.0B.2C.4D.不确定

分析 由f(f(x))=x化简可得(f(x)-x)(f(x)+x+b+1)=0;从而转化为方程f(x)-x=0与f(x)+x+b+1=0的根的个数的判断,再讨论是否有重根即可.

解答 解:∵f(f(x))=x,
∴f2(x)+bf(x)+c-x=0,
即f2(x)-x2+x2+bf(x)-bx+bx+c-x=0
即(f(x)-x)(f(x)+x)+b(f(x)-x)+x2+bx+c-x=0,
即(f(x)-x)(f(x)+x)+b(f(x)-x)+f(x)-x=0,
即(f(x)-x)(f(x)+x+b+1)=0;
f(x)-x=x2+(b-1)x+c=0的根即为x1,x2
且|x1-x2|2=(x1+x22-4x1x2=(b-1)2-4c>4,
则b2-2b-3-4c>0,
f(x)+x+b+1=x2+(b+1)x+b+c+1=0,
其判别式△=(b+1)2-4(b+c+1)=b2-2b-3-4c>0,
因此也有2个不等实根.
假设两个方程有相同的根x,
则两方程相减得等根为:2x+b+1=0,
即x=-$\frac{b+1}{2}$,
代入原方程得,
(-$\frac{b+1}{2}$)2-$\frac{b+1}{2}$(b-1)+c=0,
化简可得,b2-2b-3-4c=0,
这与b2-2b-3-4c>0相矛盾;
因此有四个不同的根;
故选C.

点评 本题考查了复合函数的性质应用,难点在于化简(f(x))=x为(f(x)-x)(f(x)+x+b+1)=0的形式,同时注意讨论方程是否存在重根,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知m=-8.00,n=15.00,求f(x)=(x2+mx+n)(1-x2)的最大值16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=$\frac{1}{x}$-x+alnx(a∈R)(e=2.71828…是一个无理数).
(1)若函数f(x)在定义域上不单调,求a的取值范围;
(2)设函数f(x)的两个极值点分别为x1和x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k,若k≤$\frac{2e}{e^2-1}$•a-2恒成立,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x|x-a|+2x,若存在a∈[-4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,则实数t的取值范围为(  )
A.(1,$\frac{9}{8}$)B.(1,$\frac{9}{7}$)C.($\frac{9}{7}$,$\frac{3}{2}$)D.($\frac{9}{8}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列{an}中,a2=2,a5=$\frac{1}{4}$,则a1+a2+a3+…+an的取值范围为{8(1-$\frac{1}{{2}^{n}}$)|n∈N*}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{x}{lnx}$.g(x)=ax+1.
(1)若a=2,设函数h(x)=f(x)+g(x),求h(x)在(1,+∞)上的单调性;
(2)设函数f(x),g(x)的导函数分别为f′(x),g′(x),若?x1、x2∈(1,e2],f(x1)≤f′(x2)-g′(x2)成立.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线$\sqrt{x}$+$\sqrt{y}$=1与两坐标轴所围成图形的面积是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,且 Sn=n2-4n+4.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{a_n}{2^n}$,数列{bn}的前n项和为Tn,求Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四边形ABCD是⊙O的内接四边形,延长BA和CD相交于点P,$\frac{PA}{PB}$=$\frac{1}{4}$,
$\frac{PD}{PC}$=$\frac{1}{2}$.
(Ⅰ)求$\frac{AD}{BC}$的值;
(Ⅱ)若BD为⊙O的直径,且PA=1,求BC的长.

查看答案和解析>>

同步练习册答案