精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{x}{lnx}$.g(x)=ax+1.
(1)若a=2,设函数h(x)=f(x)+g(x),求h(x)在(1,+∞)上的单调性;
(2)设函数f(x),g(x)的导函数分别为f′(x),g′(x),若?x1、x2∈(1,e2],f(x1)≤f′(x2)-g′(x2)成立.求实数a的取值范围.

分析 (1)求出a=2时,h(x)的导数,令导数大于0,得增区间;令导数小于0,得减区间;
(2)分别求出f(x)的最小值,令h(x)=f′(x)-g′(x)=$\frac{lnx-1}{(lnx)^{2}}$-a,求出h(x),判断单调性即可得到h(x)的最大值,再由题意可得f(x)的最小值不大于h(x)的最大值,解不等式即可得到a的范围.

解答 解:(1)若a=2,则h(x)=f(x)+g(x)=$\frac{x}{lnx}$+2x+1,
h′(x)=$\frac{lnx-1}{(lnx)^{2}}$+2=$\frac{(2lnx-1)(lnx+1)}{(lnx)^{2}}$,
当x>$\sqrt{e}$时,h′(x)>0,h(x)在($\sqrt{e}$,+∞)递增;
当1<x<$\sqrt{e}$时,h′(x)<0,h(x)在(1,$\sqrt{e}$)递减.
则有h(x)的单调增区间为($\sqrt{e}$,+∞),单调减区间为(1,$\sqrt{e}$);
(2)f′(x)=$\frac{lnx-1}{(lnx)^{2}}$,g′(x)=a,
当1<x<e时,f′(x)<0,f(x)在(1,e)递减;
当e<x≤e2时,f′(x)>0,f(x)在(e,e2]递增.
则有x=e,f(x)取得最小值,且为$\frac{e}{lne}$=e.
令h(x)=f′(x)-g′(x)=$\frac{lnx-1}{(lnx)^{2}}$-a,
h′(x)=$\frac{1}{x}$•$\frac{2-lnx}{(lnx)^{3}}$,当1<x≤e2时,h′(x)>0,h(x)在(1,e2]递增,
则有x=e2,h(x)取得最大值,且为$\frac{1}{4}$-a,
由?x1、x2∈(1,e2],f(x1)≤f′(x2)-g′(x2)成立,
可得e≤$\frac{1}{4}$-a,
解得a≤$\frac{1}{4}$-e.
故实数a的取值范围为(-∞,$\frac{1}{4}$-e].

点评 本题考查导数的运用:求单调区间和极值、最值,同时考查不等式成立问题转化为求函数的最值问题,考查运算化简能力,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图是一个长方体ABCD-A1B1C1D1被一个平面截去一部分后,所得多面体的直观图,已知AB=6,AD=AA1=4,BE=CF=2.
(Ⅰ)若点M的棱DD1的中点,求证:BM∥平面A1EFD;
(Ⅱ)求此多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别是F1,F2,且F2的坐标为(1,0),离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)设A是椭圆C的左顶点,直线l的方程为x=4,过F2的直线l′与椭圆C相交于异于点A的P,Q两点.
①求$\overrightarrow{AP}•\overrightarrow{AQ}$的取值范围;
②若直线AP,AQ与直线l分别相交于M,N两点,求证:两动点M,N的纵坐标之积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:sin50°+$\sqrt{3}$tan10°cos40°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x2+bx+c,若方程f(x)=x有两个根x1,x2,并且|x1-x2|>2,则方程f(f(x))=x的根的个数为(  )
A.0B.2C.4D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若在区间(a,b)上任意x满足f(x)>0,f′(x)>0,f″(x)>0,其中f′(x)为f(x)的导数,f″(x)是f′(x)的导数,则称f(x)是区间(a,b)上的“δ”函数.已知函数φ(x)=$\frac{m}{3}$x3-$\frac{1}{2}$x2-x+ex是区间(0,+∞)上的“δ”函数.
(1)实数m的取值范围是m>-$\frac{1}{2}$;
(2)若g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2-x+ex,记S1=${∫}_{a}^{b}$g(x)dx,S2=$\frac{g(a)+g(b)}{2}$•(b-a),S3=g(a)(b-a),其中b>a>0,则S1,S2,S3中最大的为s2>s1>s3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解下列线性规划问题
(1)设z=3x+4y,式中的变量x,y满足:$\left\{\begin{array}{l}{x+y≤3\\}\\{y≤2x}\\{x,y≥0}\end{array}\right.$,求z的最大值zmax
(2)设z=x+y,式中的变量x,y满足$\left\{\begin{array}{l}{x+2y≥2\\}\\{5x+2y≥6}\\{x,y≥0}\end{array}\right.$,求z的最小值zmin

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数y=$\frac{1}{2}$sin2x+acosx在区间(0,π)上是增函数,则实数a的取值范围是a<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,矩形ABCD所在平面与直角三角形ABE所在平面互相垂直,AE⊥BE,点M,N分别是AE,CD的中点.
(1)求证:MN∥平面BCE;
(2)求证:平面BCE⊥平面ADE.

查看答案和解析>>

同步练习册答案