精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C:的左、右焦点分别为F1,F2,离心率为,P为椭圆C上的动点,且满足面积的最大值为4.

(1)求动点Q的轨迹E的方程和椭圆C的方程.

(2)若点P不在x轴上,过点F2OP的平行线交曲线CM、N两个不同的点,求面积的最大值.

【答案】(1),(2)

【解析】分析:(1)由椭圆的定义可得圆的方程为,结合面积的最大值为可得,又,进而可得结果;(2)由消去可得,利用韦达定理以及三角形面积公式可得三角形面积为=,换元后利用配方法求最值即可.

详解:(1)由椭圆的定义,又

∴动点轨迹E是以F2(c,0)为圆心,半径为的圆,

E的方程为

当点QF1F2的距离为时,最大

由题知:,又

故动点Q的轨迹E的方程为

椭圆C的方程为

(2)设,直线MN的方程为

显然,则

=

=

令:t=4+3m2

时,的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中,若存在唯一的整数使得,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左、右焦点分别为,点是坐标平面内一点,且 为坐标原点).

(1)求椭圆的方程;

(2)过点且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过该点?若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,其中错误的个数是()

①经过球面上任意两点,可以作且只可以作一个大圆;

②经过球直径的三等分点,作垂直于该直径的两个平面,则这两个平面把球面分成三部分的面积相等;

③球的面积是它大圆面积的四倍;

④球面上两点的球面距离,是这两点所在截面圆上,以这两点为端点的劣弧的长.

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,

(1)相交于点,且平面,求实数的值;

(2)若, 求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)的定义域为(0,+∞),且对一切x>0,y>0都有ff(x)-f(y),当x>1时,有f(x)>0。

(1)求f(1)的值;

(2)判断f(x)的单调性并证明;

(3)若f(6)=1,解不等式f(x+3)-f<2;

(4)若f(4)=2,求f(x)在[1,16]上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系xoy中,曲线 (:y=kx (x),以坐标原点为极点,x轴正半轴为极轴建立坐标系,曲线的极坐标方程为:.

(1)的直角坐标方程。

(2)曲线交于点B,求A、B两点的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的个数是

(1)对分类变量的随机变量的观测值来说,越小,判断“有关系”的把握越大;

(2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;

(3)在残差图,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;

(4)设随机变量服从正态分布

,则( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月9-25日第23届冬奥会在韩国平昌举行.4年后第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:

收看

没收看

男生

60

20

女生

20

20

(Ⅰ)根据上表说明,能否有的把握认为收看开幕式与性别有关?

(Ⅱ)现从参与问卷调查且收看了开幕式的学生中采用按性别分层抽样的方法选取8人参加2022年北京冬奥会志愿者宣传活动.

(ⅰ)问男女学生各选取多少人?

(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

同步练习册答案