精英家教网 > 高中数学 > 题目详情
9.已知偶函数y=f(x)在[0,4]上是减函数,则f(-$\sqrt{2}$),f(0),f(π)从大到小的排序为f(0)>f(-$\sqrt{2}$)>f(π).

分析 根据函数奇偶性和单调性之间的关系,进行判断即可.

解答 解:∵y=f(x)是偶函数,
∴f(-$\sqrt{2}$)=f($\sqrt{2}$),
∵y=f(x)在[0,4]上是减函数,
∴f(0)>f($\sqrt{2}$)>f(π),
即f(0)>f(-$\sqrt{2}$)>f(π),
故答案为:f(0)>f(-$\sqrt{2}$)>f(π).

点评 本题主要考查函数值的大小比较,根据函数奇偶性和单调性的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求下列函数的值域
(1)y=log2(x2-4x+6);
(2)y=log2$\frac{1}{-{x}^{2}+2x+2}$;
(3)y=log2(x2-4x-5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.log49343等于(  )
A.7B.2C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和为Sn,且an=n•2n,则Sn=(n-1)•2n+1+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在空间直角坐标系中,已知正四面体A-BCD的顶点A(0,0,0),B(0,2,0),$C({\sqrt{3},1,0})$,则顶点D的坐标为$(\frac{\sqrt{3}}{3},1,±\frac{2\sqrt{6}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,$AB=3,AC=\sqrt{3},B=\frac{π}{6}$,则△ABC的面积等于(  )
A.$\frac{{3\sqrt{3}}}{2}$B.$\frac{{3\sqrt{3}}}{4}$C.$\frac{{3\sqrt{3}}}{2}$或$3\sqrt{3}$D.$\frac{{3\sqrt{3}}}{2}$或$\frac{{3\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合 A={x|x≤a+3},B={x|x<-1或x>5},若A⊆B,则a的取值范围是(  )
A.a<-2B.a>-2C.a≤-4D.a<-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若一个样本容量为8的样本的平均数为5,方差为2.现样本中又加入一个新数据5,此时样本容量为9,平均数为$\overline{x}$,方差为s2,则(  )
A.$\overline{x}$=5,s2<2B.$\overline{x}$=5,s2>2C.$\overline{x}$>5,s2<2D.$\overline{x}$>5,s2>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=(x-$\frac{1}{2}$)0+$\sqrt{x+2}$的定义域为(  )
A.$(-2,\frac{1}{2})$B.[-2,+∞)C.$[-2,\frac{1}{2})∪(\frac{1}{2},+∞)$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

同步练习册答案