精英家教网 > 高中数学 > 题目详情
4.在空间直角坐标系中,已知正四面体A-BCD的顶点A(0,0,0),B(0,2,0),$C({\sqrt{3},1,0})$,则顶点D的坐标为$(\frac{\sqrt{3}}{3},1,±\frac{2\sqrt{6}}{3})$.

分析 由A(0,0,0),B(0,2,0),$C({\sqrt{3},1,0})$,可得|AB|=|BC|=|AC|=2,△ABC的重心G$(\frac{\sqrt{3}}{3},1,0)$.设E为边长BC的中点.可得DE=AE=$\sqrt{3}$,GE=$\frac{1}{3}AE$,设D$(\frac{\sqrt{3}}{3},1,z)$.利用DG2+GE2=DE2,即可得出.

解答 解:由A(0,0,0),B(0,2,0),$C({\sqrt{3},1,0})$,
可得|AB|=|BC|=|AC|=2,△ABC的重心G$(\frac{\sqrt{3}}{3},1,0)$.
设E为边长BC的中点.
则DE=AE=$\sqrt{3}$,GE=$\frac{1}{3}AE$=$\frac{\sqrt{3}}{3}$,
设D$(\frac{\sqrt{3}}{3},1,z)$.
则DG2+GE2=DE2
∴${z}^{2}+(\frac{1}{3}×\sqrt{3})^{2}$=$(\sqrt{3})^{2}$,
解得z=$±\frac{2\sqrt{6}}{3}$.
故答案为:$(\frac{\sqrt{3}}{3},1,±\frac{2\sqrt{6}}{3})$.

点评 本题考查了三角形的重心公式、正四面体的性质、勾股定理、等边三角形的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.给出下列函数:①y=x3+1②y=lg$\frac{1+x}{1-x}$③y=x$+\frac{2}{x}$④y=ln($\sqrt{{x}^{2}+1}-x$),其中奇函数的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)同时满足下列三个条件:
(1)f(1+x)=f(1-x);
(2)f(x)的最大值为16;
(3)方程f(x)=0的两根的平方和等于18.求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2DC=2,E为BD1的中点,F为AB的中点,∠DAB=60°.
(Ⅰ)求证:EF∥平面ADD1A1
(Ⅱ)若BB1=$\frac{{\sqrt{2}}}{2}$,求A1F与平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,设角A,B,C的对边分别为a、b、c,且a=b,sinA+cosC=0.
(1)求角A的大小; 
(2)若BC边上的中线AM的长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知偶函数y=f(x)在[0,4]上是减函数,则f(-$\sqrt{2}$),f(0),f(π)从大到小的排序为f(0)>f(-$\sqrt{2}$)>f(π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,$B=\frac{π}{4},AB=\sqrt{2},BC=3$,则sinC=(  )
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{3\sqrt{10}}}{10}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}满足an+1=$\frac{1}{1-a_n}$,a1=$\frac{1}{2}$,则a3=(  )
A.1B.2C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)当a=-1时,求函数f(x)的单调递增区间;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.

查看答案和解析>>

同步练习册答案