分析 由二次函数f(x)同时满足下列两个个条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为16;可设f(x)=a(x-1)2+16(a<0).又f(x)=0的两根的平方和等于18.利用根与系数的关系即可得出a.
解答 解:由二次函数f(x)同时满足下列两个条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为16;
说明其对称轴为x=1,抛物线开口向下.
可设f(x)=a(x-1)2+16(a<0).
化为f(x)=ax2-2ax+a+16,
设f(x)=0的两个实数根为x1,x2.
∴x1+x2=2,x1x2=$\frac{a+16}{a}$.(*)
∵f(x)=0的两根的平方和等于18,∴4-2•$\frac{a+16}{a}$=18,解得a=-2.
∴f(x)=-2(x-1)2+16.
点评 本题综合考查了二次函数的对称性、最值及其零点等基础知识与基本方法,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com