精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足a1=1,an+1=2an+1(n∈N*)
(1)求证:数列{an+1}是等比数列;
(2)求{an}的通项公式.

【答案】
(1)证明:由an+1=2an+1得an+1+1=2(an+1),

又an+1≠0,

=2,

即{an+1}为等比数列


(2)解:由(1)知an+1=(a1+1)qn1

即an=(a1+1)qn1﹣1=22n1﹣1=2n﹣1


【解析】(1)给等式an+1=2an+1两边都加上1,右边提取2后,变形得到 等于2,所以数列{an+1}是等比数列,得证;(2)设数列{an+1}的公比为2,根据首项为a1+1等于2,写出数列{an+1}的通项公式,变形后即可得到{an}的通项公式.
【考点精析】本题主要考查了等比数列的通项公式(及其变式)的相关知识点,需要掌握通项公式:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 若对任意的正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 是偶函数,且在(0,+∞)是减函数,则整数a的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣6y+12=0,点A(3,5).
(1)求过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆

1)若圆轴相切,求圆的方程;

2)求圆心的轨迹方程;

3)已知,圆轴相交于两点(点在点的左侧).过点任作一条直线与圆 相交于两点问:是否存在实数,使得若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题是(
A.若 互为负向量,则 + =0
B.若 =0,则 = =
C.若 都是单位向量,则 =1
D.若k为实数且k = ,则k=0或 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数有两个不同的零点,求实数的取值范围;

(2)求当时, 恒成立的的取值范围,并证明

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体AC1中,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是(

A.点H是△A1BD的垂心
B.AH的延长线经过点C1
C.AH垂直平面CB1D1
D.直线AH和BB1所成角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an} 的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(1)求数列{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案