【题目】已知数列{an} 的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(1)求数列{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn .
【答案】
(1)解:∵数列{an}的前n项和 ,
∴a1=11.
当n≥2时, .
又∵an=6n+5对n=1也成立所以an=6n+5,{bn}是等差数列,设公差为d,则an=bn+bn+1=2bn+d.
当n=1时,2b1=11﹣d;当n=2时,2b2=17﹣d
由 ,
解得d=3,
所以数列{bn}的通项公式为 ;
(2)解:由 ,
于是, ,
两边同乘以2,得 .
两式相减,得 = =﹣n2n+2.
所以,
【解析】(1)求出数列{an}的通项公式,再求数列{bn}的通项公式;(2)求出数列{cn}的通项,利用错位相减法求数列{cn}的前n项和Tn .
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知点A(0,2)为圆C:x2+y2﹣2ax﹣2ay=0(a>0)外一点,圆C上存在点P使得∠CAP=45°,则实数a的取值范围是( )
A.(0,1)
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=ln(3﹣x)(x+1)的定义域为( )
A.[﹣1,3]
B.(﹣1,3)
C.(﹣∞,﹣3)∪(1,+∞)
D.(﹣∞,﹣1)∪(3,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是公差为正数的等差数列,其前项和为,且, .
(1)求数列的通项公式;
(2)数列满足, .①求数列的通项公式;②是否存在正整数, (),使得, , 成等差数列?若存在,求出, 的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程 = x+ 的 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=2sin4x+2cos4x+cos22x﹣3.
(1)求函数f(x)的最小正周期.
(2)求函数f(x)在闭区间[ ]上的最小值并求当f(x)取最小值时,x的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年6月22 日,“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为9: 11.
(1)根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;
(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“国际教育信息化大会”的人数为,求的分布列及数学期望.
附:参考公式,其中.
临界值表:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com