精英家教网 > 高中数学 > 题目详情

【题目】如图,圆

1)若圆轴相切,求圆的方程;

2)求圆心的轨迹方程;

3)已知,圆轴相交于两点(点在点的左侧).过点任作一条直线与圆 相交于两点问:是否存在实数,使得若存在,求出实数的值,若不存在,请说明理由.

【答案】1;(23存在,使得

【解析】试题分析: 在圆的方程中,令,可得关于的一元二次方程的判别式等于零,由此求得的值,从而求得所求圆的方程。

(2)消去圆心坐标中的参数即可先求出,假设存在实数,当直线直线轴不垂直时,设直线的方程为,代入,利用韦达定理,根据的斜率之和等于零求得的值,经过检验,当直线轴垂直时,这个值仍然满足从而得出结论

解析:1)由圆轴相切,可知圆心的纵坐标的绝对值与半径相等.故先将圆的方程化成标准方程为: ,由求得.即可得到所求圆的方程为:

2)求圆心点坐标为,则 圆心点的轨迹方程为

3)令,得,即所以

假设存在实数,当直线AB与轴不垂直时,设直线AB的方程为

代入得, ,设从而

因为

因为,所以,即,得

当直线AB轴垂直时,也成立.故存在,使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为,D是AB的中点.

(1)求动点D的轨迹C的方程;

(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,当|PQ|=3时,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= sin2x+2+2cos2x.
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a,b,c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一期间,某商场决定从种服装、种家电、种日用品中,选出种商品进行促销活动.

(1)试求选出种商品中至少有一种是家电的概率;

(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高元,规定购买该商品的顾客有次抽奖的机会: 若中一次奖,则获得数额为元的奖金;若中两次奖,则获得数额为元的奖金;若中三次奖,则共获得数额为 元的奖金. 假设顾客每次抽奖中奖的概率都是,请问: 商场将奖金数额最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程.

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:

(1)画出茎叶图

(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是 ,则sin2θ﹣cos2θ的值等于(

A.1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函数f(x)的解析式;
(2)当x∈[﹣ ]时,f(x)的最小值是﹣4,求此时函数f(x)的最大值,并求出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

1)若某位顾客消费128元,求返券金额不低于30元的概率;

2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案