精英家教网 > 高中数学 > 题目详情

【题目】已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为,D是AB的中点.

(1)求动点D的轨迹C的方程;

(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,当|PQ|=3时,求直线l的方程。

【答案】(1)x2y2=3.(2).

【解析】试题分析:(1)设A(aa),B(b,-b),根据AB的长为2得(ab)2+(ab)2=12,再根据D是AB的中点得a-b=2y,a+b=2x,代入化简可得点D的轨迹C的方程(2)设直线点斜式方程,根据垂径定理列式解斜率,最后讨论斜率不存在时是否满足题意

试题解析解: (1)设D(xy),A(aa),B(b,-b),

DAB的中点, ∴xy

∵ |AB|=2,∴(ab)2+(ab)2=12,

∴(2y)2+(2x)2=12,∴点D的轨迹C的方程为x2y2=3.

(2) ①当直线lx轴垂直时,P(1,),Q(1,-),

此时|PQ|=2,不符合题意;

当直线lx轴不垂直时,设直线l的方程为yk(x-1),

由于|PQ|=3,所以圆心C到直线l的距离为

,解得k.故直线l的方程为y(x-1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.已知 bcosA=asinB. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为2的正方体中,M是棱CC1的中点.

(1)求B到面的距离;

(2)求BC与面所成角的正切值;

(3)求面与面ABCD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:以点为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为原点.

(1)求证:△OAB的面积为定值; (2)设直线y=-2x+4与圆C交于点MN,若|OM|=|ON|,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.

(1)求证:平面AEC⊥平面PDB;

(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x2+mx+1=0有两个不等的负根;命题q:4x2+4(m﹣2)x+1=0无实根.若命题p与命题q有且只有一个为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a<0,函数f(x)=acosx+ + ,其中x∈[﹣ ].
(1)设t= + ,求t的取值范围,并把f(x)表示为t的函数g(t);
(2)求函数f(x)的最大值(可以用a表示);
(3)若对区间[﹣ ]内的任意x1 , x2 , 总有|f(x1)﹣f(x2)|≤1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在ABC中,内角A,B,C的对边分别为a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆

1)若圆轴相切,求圆的方程;

2)求圆心的轨迹方程;

3)已知,圆轴相交于两点(点在点的左侧).过点任作一条直线与圆 相交于两点问:是否存在实数,使得若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案