【题目】在ABC中,内角A,B,C的对边分别为a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面积S.
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且,又数列满足: .
(1)求数列的通项公式;
(2)当为何值时,数列是等比数列?此时数列的前项和为,若存在,使m<成立,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为,D是AB的中点.
(1)求动点D的轨迹C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,当|PQ|=3时,求直线l的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近几年电子商务蓬勃发展,在2017年的“年货节”期间,一网络购物平台推销了三种商品,某网购者决定抢购这三种商品,假设该名网购者都参与了三种商品的抢购,抢购成功与否相互独立,且不重复抢购同一种商品,对三种商品的抢购成功的概率分别为 ,已知三件商品都被抢购成功的概率为,至少有一件商品被抢购成功的概率为 .
(1)求的值;
(2)若购物平台准备对抢购成功的三件商品进行优惠减免活动, 商品抢购成功减免百元, 商品抢购成功减免百元, 商品抢购成功减免百元,求该名网购者获得减免的总金额(单位:百元)的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前n项的和Sn,点(n,Sn)在函数=2x2+4x图象上:
(1)证明是等差数列;
(2)若函数,数列{bn}满足bn=,记cn=anbn,求数列前n项和Tn;
(3)是否存在实数λ,使得当x≤λ时,f(x)=﹣x2+4x﹣≤0对任意n∈N*恒成立?若存在,求出最大的实数λ,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an .
(1)求数列{an}和{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn;
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= sin2x+2+2cos2x.
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a,b,c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为 ,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】五一期间,某商场决定从种服装、种家电、种日用品中,选出种商品进行促销活动.
(1)试求选出种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高元,规定购买该商品的顾客有次抽奖的机会: 若中一次奖,则获得数额为元的奖金;若中两次奖,则获得数额为元的奖金;若中三次奖,则共获得数额为 元的奖金. 假设顾客每次抽奖中奖的概率都是,请问: 商场将奖金数额最高定为多少元,才能使促销方案对商场有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函数f(x)的解析式;
(2)当x∈[﹣ , ]时,f(x)的最小值是﹣4,求此时函数f(x)的最大值,并求出相应的x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com