精英家教网 > 高中数学 > 题目详情

(本题满分12分)
已知函数 (为非零常数,是自然对数的底数),曲线在点处的切线与轴平行.
(1)判断的单调性;
(2)若, 求的最大值.

(Ⅰ)在上是减函数.(Ⅱ)当时,的最大值为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知,在时,都取得极值。
(Ⅰ)求的值;
(Ⅱ)若都有恒成立,求c的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若函数处与直线相切;
①求实数的值;②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)设
(1)请写出的表达式(不需证明);
(2)求的极值
(3)设的最大值为的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.     (Ⅲ)(理科)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;
(2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;
(3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)当时,求的极值;
(2)当时,试比较的大小;
(3)求证:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时,x2+lnx<x3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题12分)
已知函数上为单调递增函数.
(Ⅰ)求实数的取值范围;
(Ⅱ)若,求的最小值.

查看答案和解析>>

同步练习册答案