【题目】定义在
上的函数
满足
,
,则下列说法正确的是( )
A.
在
处取得极小值,极小值为![]()
B.
只有一个零点
C.若
在
上恒成立,则![]()
D.![]()
【答案】BCD
【解析】
对A,根据
,
,求
,求出
,根据极值定义进行判断;对B,根据
单调性和零点定义,结合图象判断;对C,要保证
在
上恒成立,即
,通过构造函数求其最值,进行判断;对D,根据
单调性,和对数比较大小,进行判断.
对A,![]()
,且![]()
可得:![]()
可得:![]()
故
(
为常数)
又![]()
![]()
可得:![]()
求得:![]()
故:![]()
整理可得:
,![]()
![]()
![]()
当
,即![]()
解得:
,
,此时
单调递增
当
,即![]()
解得:
,
,
当
,即![]()
解得:
,
,此时
单调递减
![]()
,
取得极大值,
,故A说法错误;
对B,
,![]()
,![]()
,![]()
画出
草图:如图
![]()
根据图象可知:
只有一个零点,故B说法正确;
对C,要保证
在
上恒成立
即:保证
在
上恒成立
![]()
,可得
在
上恒成立
故:只需![]()
令![]()
![]()
当
时,![]()
当
时,![]()
当
时,![]()
即![]()
![]()
,故C说法正确;
对D,根据
,
单调递增,
,
单调递减,
![]()
,可得![]()
又![]()
![]()
由![]()
根据![]()
![]()
![]()
故:
,故D说法正确.
综上所述,正确的说法是:BCD
故选:BCD.
科目:高中数学 来源: 题型:
【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第
行的所有数字之和为
,若去除所有为1的项,依次构成数列
,则此数列的前55项和为( )
![]()
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网购人数的日益增多,网上的支付方式也呈现一种多样化的状态,越来越多的便捷移动支付方式受到了人们的青睐,更被网友们评为“新四大发明”之一.随着人们消费观念的进步,许多人喜欢用信用卡购物,考虑到这一点,一种“网上的信用卡”横空出世——蚂蚁花呗.这是一款支付宝和蚂蚁金融合作开发的新支付方式,简单便捷,同时也满足了部分网上消费群体在支付宝余额不足时的“赊购”消费需求.为了调查使用蚂蚁花呗“赊购”消费与消费者年龄段的关系,某网站对其注册用户开展抽样调查,在每个年龄段的注册用户中各随机抽取100人,得到各年龄段使用蚂蚁花呗“赊购”的人数百分比如图所示.
![]()
(1)由大数据可知,在18到44岁之间使用花呗“赊购”的人数百分比y与年龄x成线性相关关系,利用统计图表中的数据,以各年龄段的区间中点代表该年龄段的年龄,求所调查群体各年龄段“赊购”人数百分比y与年龄x的线性回归方程(回归直线方程的斜率和截距保留两位有效数字);
(2)该网站年龄为20岁的注册用户共有2000人,试估算该网站20岁的注册用户中使用花呗“赊购”的人数;
(3)已知该网店中年龄段在18-26岁和27-35岁的注册用户人数相同,现从18到35岁之间使用花呗“赊购”的人群中按分层抽样的方法随机抽取8人,再从这8人中简单随机抽取2人调查他们每个月使用花呗消费的额度,求抽取的两人年龄都在18到26岁的概率.
参考答案:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.
其中正确命题的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)
(1)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?
(2)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)
(3)现在有7个座位连成一排,仅安排4个男生就坐,怡好有两个空座位相邻的不同坐法共有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,P,Q分别为棱BC和棱CC1的中点,则下列说法正确的是( )
A.BC1//平面AQP
B.平面APQ截正方体所得截面为等腰梯形
C.A1D⊥平面AQP
D.异面直线QP与A1C1所成的角为60°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com