精英家教网 > 高中数学 > 题目详情

已知数列为正常数,且
(1)求数列的通项公式;
(2)设
(3)是否存在正整数M,使得恒成立?若存在,求出相应的M的最小值;若不存在,请说明理由。

(1)(2)
(3)当时,存在M=8符合题意

解析试题分析:解:(I)由题设知       1分
同时
两式作差得
所以
可见,数列           4分
                                5分
(II)                7分



                                         9分
所以,                                     10分
(III)
            12分
①当
解得符合题意,此时不存在符合题意的M。  14分
②当
解得此时存在的符合题意的M=8。  
综上所述,当时,存在M=8符合题意            16分
考点:等差数列和等比数列
点评:主要是考查了等差数列A和等比数列的求和与通项公式的综合运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列及其前项和满足:).
(1)证明:设是等差数列;(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足
(1)设是公差为的等差数列.当时,求的值;
(2)设求正整数使得一切均有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列的前项和为,且成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列是一个首项为,公差为的等差数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{}中,,且
(1)求的值;
(2)猜测数列{}的通项公式,并用数学归纳法证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设满足以下两个条件的有穷数列阶“期待数列”:
;②
(1)若等比数列 ()阶“期待数列”,求公比
(2)若一个等差数列既是 ()阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记阶“期待数列”的前项和为
(ⅰ)求证:
(ⅱ)若存在使,试问数列能否为阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,
(1)判断数列是否是等差数列,并说明理由;
(2)如果,试写出数列的通项公式;
(3)在(2)的条件下,若数列得前n项和为,问是否存在这样的实数,使当且仅当时取得最大值。若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,若对于任意的正整数都有
(1)设,求证:数列是等比数列,并求出的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和,数列满足
(1)求数列的通项公式;(2)求数列的前项和;
(3)求证:不论取何正整数,不等式恒成立

查看答案和解析>>

同步练习册答案