精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\left\{\begin{array}{l}{f(x-4),x>2}\\{{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}\right.$,则f(-2017)=e.

分析 由已知得f(-2017)=f(2017)=f(504×4+1)=f(1),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{f(x-4),x>2}\\{{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}\right.$,
∴f(-2017)=f(2017)=f(504×4+1)=f(1)=e1=e.
故答案为:e.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为为$\frac{1}{2}$,F为椭圆C的右焦点A(-a,0),|AF|=3.
(I) 求椭圆C的方程;
(II) 设O为原点,P为椭圆上一点,AP的中点为M.直线OM与直线x=4交于点D,过O作OE丄DF,交直线x=4于点E.求证:OE∥AP.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为弘扬中国传统文化,某校在高中三个年级中抽取甲、乙、丙三名同学进行问卷调查.调查结果显示这三名同学来自不同的年级,加入了不同的三个社团:“楹联社”、“书法社”、“汉服社”,还满足如下条件:
(1)甲同学没有加入“楹联社”;
(2)乙同学没有加入“汉服社”;
(3)加入“楹联社”的那名同学不在高二年级;
(4)加入“汉服社”的那名同学在高一年级;
(5)乙同学不在高三年级.
试问:丙同学所在的社团是(  )
A.楹联社B.书法社
C.汉服社D.条件不足无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*
(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求证:数列{Sn}不是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若点P是以F1,F2为焦点的双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)上一点,PF1⊥PF2,且|PF1|=2|PF2|,则此双曲线的标准方程是(  )
A.x2-$\frac{{y}^{2}}{4}$=1B.x2-$\frac{{y}^{2}}{3}$=1C.x2-$\frac{{y}^{2}}{5}$=1D.x2-$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,圆C的方程是x2+y2=4.
(Ⅰ)过点(5,3)作直线l与圆C相交于E,F两点,若OE⊥OF,求直线l的斜率;
(Ⅱ)如图,设M(x1,y1),P(x2,y2)是圆C上两个动点,点M关于原点的对称点为M1,关于x轴的对称点为M2,若直线PM1,PM2与y轴的交点坐标分别为(0,m)和(0,n),试问:mn是否是定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若△ABC的内角A,B,C的对边分别为a,b,c,若a+b=2,∠C=120°,则边c的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线y=$\frac{2}{x}$与直线y=x-1及x=1所围成的封闭图形的面积为(  )
A.2-ln2B.2ln2-$\frac{1}{2}$C.2+ln2D.2ln2+$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线y2=8x与垂直x轴的直线l相交于A,B两点,圆C:x2+y2=1分别与x轴正、负半轴相交于点P、N,且直线AP与BN交于点M
(1)求证:点M恒在抛物线上;
(2)求△AMN面积的最小值.

查看答案和解析>>

同步练习册答案