| A. | 2-ln2 | B. | 2ln2-$\frac{1}{2}$ | C. | 2+ln2 | D. | 2ln2+$\frac{1}{2}$ |
分析 先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=$\frac{2}{x}$与直线y=x-1及x=1围成的封闭图形的面积,即可求得结论
解答
解:联立方程组$\left\{\begin{array}{l}{y=\frac{2}{x}}\\{y=x-1}\end{array}\right.$,解得x=2,y=1,
则曲线y=$\frac{2}{x}$与直线y=x-1及x=1所围成的封闭图形的面积为
S=${∫}_{1}^{2}$($\frac{2}{x}$-x+1)dx=(2lnx-$\frac{1}{2}$x2+x)${\;}_{1}^{2}$
=(2ln2-2+2)-(0-$\frac{1}{2}$+1)=2ln2-$\frac{1}{2}$,
故选:B
点评 本题考查导数知识的运用,考查利用定积分求面积,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等边三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2n-1)2 | B. | 4n-1 | C. | $\frac{{4}^{n}-1}{3}$ | D. | $\frac{{4}^{n+1}-4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com