精英家教网 > 高中数学 > 题目详情
10.曲线y=$\frac{2}{x}$与直线y=x-1及x=1所围成的封闭图形的面积为(  )
A.2-ln2B.2ln2-$\frac{1}{2}$C.2+ln2D.2ln2+$\frac{1}{2}$

分析 先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=$\frac{2}{x}$与直线y=x-1及x=1围成的封闭图形的面积,即可求得结论

解答 解:联立方程组$\left\{\begin{array}{l}{y=\frac{2}{x}}\\{y=x-1}\end{array}\right.$,解得x=2,y=1,
则曲线y=$\frac{2}{x}$与直线y=x-1及x=1所围成的封闭图形的面积为
S=${∫}_{1}^{2}$($\frac{2}{x}$-x+1)dx=(2lnx-$\frac{1}{2}$x2+x)${\;}_{1}^{2}$
=(2ln2-2+2)-(0-$\frac{1}{2}$+1)=2ln2-$\frac{1}{2}$,
故选:B

点评 本题考查导数知识的运用,考查利用定积分求面积,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.△ABC中,角A,B,C所对的边长分别为a,b,c.已知$a=2\sqrt{3}$,$A=\frac{π}{3}$.
(Ⅰ)当b=2时,求c;
(Ⅱ)求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{f(x-4),x>2}\\{{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}\right.$,则f(-2017)=e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角对应的三边,已知acosB=bcosA,△ABC的形状(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+cosφ\\ y=sinφ\end{array}$,(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的普通方程和极坐标方程;
(2)直线l的极坐标方程是$2ρsin({θ+\frac{π}{3}})=6\sqrt{3}$,射线OM:θ=$\frac{π}{6}$与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),A、C是椭圆短轴的两端点,过点E(3c,0)的直线AE与椭圆相交于另一点B,且F1A∥F2B
(I )求椭圆的离心率;
(II)设直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求$\frac{n}{m}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.2017年离考考前第二次适应性训练考试结束后,对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布N(95,82)的密度曲线非常拟合.据此估计:在全市随机柚取的4名高三同学中,恰有2名冋学的英语成绩超过95分的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}的前n项和Sn=2n-1,则数列{an2}的前n项和Tn=(  )
A.(2n-1)2B.4n-1C.$\frac{{4}^{n}-1}{3}$D.$\frac{{4}^{n+1}-4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),C2:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),当α=$\frac{π}{3}$时,则C1与C2的交点坐标为(1,0),($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

同步练习册答案