精英家教网 > 高中数学 > 题目详情
18.在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角对应的三边,已知acosB=bcosA,△ABC的形状(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

分析 由题中条件并利用正弦定理可得 sinAcosB=sinBcosA,即sin(A-B)=0;再根据A-B的范围,可得A=B,从而得出结论.

解答 解:∵acosB=bcosA,
∴由正弦定理可得 sinAcosB=sinBcosA,sin(A-B)=0.
又∵-π<A-B<π,
∴A-B=0.
故△ABC的形状是等腰三角形,
故选:B.

点评 本题主要考查正弦定理的应用,已知三角函数值求角的大小,得到sin(A-B)=0,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个顶点分别为A(0,b)和C(0,-b),两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点E(3c,0)的直线AE与椭圆相交于另一点B,且F1A∥F2B.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求$\frac{n}{m}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*
(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求证:数列{Sn}不是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,圆C的方程是x2+y2=4.
(Ⅰ)过点(5,3)作直线l与圆C相交于E,F两点,若OE⊥OF,求直线l的斜率;
(Ⅱ)如图,设M(x1,y1),P(x2,y2)是圆C上两个动点,点M关于原点的对称点为M1,关于x轴的对称点为M2,若直线PM1,PM2与y轴的交点坐标分别为(0,m)和(0,n),试问:mn是否是定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若△ABC的内角A,B,C的对边分别为a,b,c,若a+b=2,∠C=120°,则边c的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,过焦点垂直长轴的弦长为3.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点作直线交抛物线y2=2x于A、B两点,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线y=$\frac{2}{x}$与直线y=x-1及x=1所围成的封闭图形的面积为(  )
A.2-ln2B.2ln2-$\frac{1}{2}$C.2+ln2D.2ln2+$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设i为虚数单位,则(2i-x)6的展开式中含x4项的系数为-60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=2sin(2x+$\frac{π}{4}$)的图象向右平移φ(φ>0)个单位,再将图象上每一点的横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),所得图象关于直线x=$\frac{π}{4}$对称,则φ的最小值为(  )
A.$\frac{1}{8}$πB.$\frac{1}{4}$πC.$\frac{3}{8}$πD.$\frac{1}{2}$π

查看答案和解析>>

同步练习册答案