精英家教网 > 高中数学 > 题目详情
3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,过焦点垂直长轴的弦长为3.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点作直线交抛物线y2=2x于A、B两点,求证:OA⊥OB.

分析 (1)根据题意,分析可得$\left\{\begin{array}{l}\frac{c}{a}=\frac{1}{2}\\ \frac{{2{b^2}}}{a}=3\end{array}\right.$,解可得a、c的值,由椭圆的定义可得b的值,将a、b的值代入椭圆方程即可得答案;
(2)设过椭圆的右顶点(2,0)的直线AB的方程为x=my+2,与抛物线方程联立,设出A、B点的坐标,由根与系数的关系的关系分析计算x1x2+y1y2的值,由向量数量积的性质可得证明.

解答 解:(1)椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,过焦点垂直长轴的弦长为3,
则有$\left\{\begin{array}{l}\frac{c}{a}=\frac{1}{2}\\ \frac{{2{b^2}}}{a}=3\end{array}\right.$,
解可得a=2,c=1,则b2=a2-c2=3.
所以,所求椭圆的标准方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.
(2)证明:设过椭圆的右顶点(2,0)的直线AB的方程为x=my+2.
代入抛物线方程y2=2x,得y2-2my-4=0.
设A(x1,y1)、B(x2,y2),
则$\left\{\begin{array}{l}{y_1}+{y_2}=2m\\{y_1}{y_2}=-4.\end{array}\right.$,
∴x1x2+y1y2=(my1+2)(my2+2)+y1y2=(1+m2)y1y2+2m(y1+y2)+4=0.
∴OA⊥OB.

点评 本题考查椭圆、抛物线的几何性质,涉及直线与椭圆、抛物线的位置关系,注意分析直线时需要讨论直线的斜率是存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设正实数a,b满足a+b=1,则(  )
A.$\frac{1}{a}+\frac{1}{b}$有最大值4B.$\sqrt{ab}$有最小值 $\frac{1}{2}$C.$\sqrt{a}+\sqrt{b}$有最大值$\sqrt{2}$D.a2+b2有最小值$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知分段函数y=$\left\{\begin{array}{l}{3-x,x<-1}\\{{x}^{2},-1≤x≤1}\\{x+1,x>1}\end{array}\right.$,若执行如图所示的程序框图,则框图中的条件应该填写(  )
A.x≥1?B.x≥-1?C.-1≤x≤2?D.x≤1?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列{an}满足a1=2,an+1=$\frac{1}{{1-{a_n}}}(n∈{N^+})$,则a2017=(  )
A.-2B.-1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角对应的三边,已知acosB=bcosA,△ABC的形状(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.己知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点与抛物线y2=8x的焦点重合,则a=(  )
A.$\sqrt{19}$B.$\sqrt{13}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),A、C是椭圆短轴的两端点,过点E(3c,0)的直线AE与椭圆相交于另一点B,且F1A∥F2B
(I )求椭圆的离心率;
(II)设直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求$\frac{n}{m}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知动圆C与圆C1:(x-2)2+y2=1外切.又与直线l:x=-1相切
(1)求动圆C的圆心的轨迹方程E;
(2)若动点M为直线l上任一点,过点P(1,0)的直线与曲线E相交干A,B两点.求证:kMA+kMB=2kMP

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.摩拜单车和ofo小黄车等各种共享自行车已经遍布大街小巷,给我们的生活带来了便利.某自行车租车点的收费标准是:每车使用1小时之内是免费的,超过1小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车(各租一车一次).设甲、乙不超过两小时还车的概率分别为$\frac{1}{4}$,$\frac{1}{2}$;1小时以上且不超过2小时还车的概率分别为$\frac{1}{2}$,$\frac{1}{4}$;两人租车时间都不会超过3小时.
(Ⅰ)求甲乙两人所付的租车费用相同的概率;
(Ⅱ)设甲乙两人所付租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ.

查看答案和解析>>

同步练习册答案