精英家教网 > 高中数学 > 题目详情
11.数列{an}满足a1=2,an+1=$\frac{1}{{1-{a_n}}}(n∈{N^+})$,则a2017=(  )
A.-2B.-1C.2D.$\frac{1}{2}$

分析 利用数列递推关系可得其周期,即可得出.

解答 解:∵数列{an}满足a1=2,an+1=$\frac{1}{{1-{a_n}}}(n∈{N^+})$,
∴a2=$\frac{1}{1-{a}_{1}}$=-1,同理可得a3=$\frac{1}{2}$,a4=2,….
∴an+3=an,数列{an}是周期为3的数列.
则a2017=a672×3+1=a1=2.
故选:C.

点评 本题考查了数列递推关系、周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.某产品进入商场销售,商场第一年免收管理费,因此第一年该产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对该产品征收销售额的x%的管理费(即销售100元要征收x元),于是该产品定价每件比第一年增加了$\frac{70•x%}{1-x%}$元,预计年销售额减少x万件,要使第二年商场在该产品经营中收取的管理费不少于14万元,则x的最大值是(  )
A.2B.6C.8.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.为弘扬中国传统文化,某校在高中三个年级中抽取甲、乙、丙三名同学进行问卷调查.调查结果显示这三名同学来自不同的年级,加入了不同的三个社团:“楹联社”、“书法社”、“汉服社”,还满足如下条件:
(1)甲同学没有加入“楹联社”;
(2)乙同学没有加入“汉服社”;
(3)加入“楹联社”的那名同学不在高二年级;
(4)加入“汉服社”的那名同学在高一年级;
(5)乙同学不在高三年级.
试问:甲同学所在的社团是(  )
A.楹联社B.书法社
C.汉服社D.条件不足无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{{log}_{\frac{1}{2}}|x|,x<0}\end{array}\right.$,若方程f(x2-x)=a有六个根,则实数a的取值范围是(  )
A.(1,2)B.(-1,2)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,圆C的方程是x2+y2=4.
(Ⅰ)过点(5,3)作直线l与圆C相交于E,F两点,若OE⊥OF,求直线l的斜率;
(Ⅱ)如图,设M(x1,y1),P(x2,y2)是圆C上两个动点,点M关于原点的对称点为M1,关于x轴的对称点为M2,若直线PM1,PM2与y轴的交点坐标分别为(0,m)和(0,n),试问:mn是否是定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知y=8x2,则它的焦点坐标为(  )
A.(2,0)B.(0,2)C.$({\frac{1}{32},0})$D.$({0,\frac{1}{32}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,过焦点垂直长轴的弦长为3.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点作直线交抛物线y2=2x于A、B两点,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}等差数列,a10=10,其前10项和S10=60,则其公差d=(  )
A.-$\frac{2}{9}$B.$\frac{2}{9}$C.-$\frac{8}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sinωx-$\sqrt{3}$cosωx(ω>0)的图象与x轴的两个相邻交点的距离等于$\frac{π}{2}$,若将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,则y=g(x)是减函数的区间为(  )
A.(-$\frac{π}{3}$,0)B.(0,$\frac{π}{3}$)C.($\frac{π}{4}$,$\frac{π}{3}$)D.(-$\frac{π}{4}$,$\frac{π}{4}$)

查看答案和解析>>

同步练习册答案