精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{{log}_{\frac{1}{2}}|x|,x<0}\end{array}\right.$,若方程f(x2-x)=a有六个根,则实数a的取值范围是(  )
A.(1,2)B.(-1,2)C.(1,+∞)D.(2,+∞)

分析 令x2-x=t,得出关于x的方程x2-x=t的解得分布情况,作出f(t)的函数图象,讨论关于t的方程f(t)=a的解得情况,从而得出方程f(x2-x)=a的解的个数.

解答 解:f(x)的定义域为{x|x≠0},
令x2-x=t(x≠0),则t≥-$\frac{1}{4}$,
且t=-$\frac{1}{4}$或t=0时,方程x2-x=t只有一解,
当-$\frac{1}{4}$<t<0或t>0时,方程x2-x=t有两解,
∴f(t)=$\left\{\begin{array}{l}{t+\frac{1}{t},t>0}\\{lo{g}_{\frac{1}{2}}(-t),-\frac{1}{4}≤t<0}\end{array}\right.$,
∴f(t)在[-$\frac{1}{4}$,0)上单调递增,在(0,1)上单调递减,在(1,+∞)上单调递增,
作出y=f(t)的函数图象如图所示:

由图象可知,当a<2时,关于t的方程f(t)=a无解,
∴方程f(x2-x)=a无解,不符合题意;
当a=2时,关于t的方程f(t)=a有两解t1=-$\frac{1}{4}$,t2=1,
∵x2-x=-$\frac{1}{4}$只有一解,x2-x=1有两解,
∴方程f(x2-x)=a有三解,不符合题意;
当a>2时,关于t的方程f(t)=a有三解,不妨从t1<t2<t3
显然-$\frac{1}{4}$<t1<0,0<t2<1,t3>1,
又关于x的方程x2-x=ti(i=1,2,3)都有两解,
∴方程f(x2-x)=a有六解,符合题意.
故选D.

点评 本题考查了方程的根与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在测试中,客观题难度的计算公式为Pi=$\frac{{R}_{i}}{N}$,其中Pi为第i题的难度,Ri为答对该题的人数,N为参加测试的总人数.
现对某校髙三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如表所示:
题号12345
考前预估难度Pi0.90.80.70.60.4
测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如表所示(“√”表示答对,“×”表示答错):
题号
学生编号
12345
1×
2×
3×
4××
5
6×××
7××
8××××
9××
10×
(I)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入表,并估计这120名学生中第5题的实测答对人数;
题号12345
实测答对人数
实测难度
(Ⅱ)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;
(Ⅲ)定义统计量S=$\frac{1}{n}$[(P′1-P12+(P′2-P22+…+(P′n-Pn2],其中P′i为第i题的实测难度,Pi为第i题的预估难度(i=l,2,…,n),规定:若S<0.05,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=lnx与函数g(x)=ax2-a的图象在点(1,0)的切线相同,则实数a的值为(  )
A.1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{1}{2}$或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:
(Ⅰ)(1-2i)(3+4i)(-2+i)
(Ⅱ) (1+2i)÷(3-4i)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知分段函数y=$\left\{\begin{array}{l}{3-x,x<-1}\\{{x}^{2},-1≤x≤1}\\{x+1,x>1}\end{array}\right.$,若执行如图所示的程序框图,则框图中的条件应该填写(  )
A.x≥1?B.x≥-1?C.-1≤x≤2?D.x≤1?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个内角A,B,C所对的边分别为a,b,c.设向量$\overrightarrow{m}$=(a-c,a-b),$\overrightarrow{n}$=(a+b,c),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(Ⅰ)求∠B;
(Ⅱ)若M是BC的中点,且AM=AC,求sin∠BAC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列{an}满足a1=2,an+1=$\frac{1}{{1-{a_n}}}(n∈{N^+})$,则a2017=(  )
A.-2B.-1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.己知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点与抛物线y2=8x的焦点重合,则a=(  )
A.$\sqrt{19}$B.$\sqrt{13}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某人经营一个抽奖游戏,顾客花费4元钱可购买一次游戏机会,毎次游戏,顾客从标有1、2、3、4的4个红球和标有2、4的2个黑球共6个球中随机摸出2个球,并根据模出的球的情况进行兑奖,经营者将顾客模出的球的情况分成以下类别:
A.两球的顔色相同且号码相邻;
B.两球的颜色相同,但号码不相邻;
C.两球的顔色不同.但号码相邻;
D.两球的号码相同
E.其他情况
经营者打算将以上五种类别中最不容易发生的一种类別对应一等奖,最容易发生的一种类别对应二等奖.其它类别对应三等奖
(1)一、二等奖分别对应哪一种类别(用宇母表示即可)
(2)若中一、二、三等奖分别获得价值10元、4元、1元的奖品,某天所有顾客参加游戏的次数共计100次,试估计经营者这一天的盈利.

查看答案和解析>>

同步练习册答案