精英家教网 > 高中数学 > 题目详情
2.为弘扬中国传统文化,某校在高中三个年级中抽取甲、乙、丙三名同学进行问卷调查.调查结果显示这三名同学来自不同的年级,加入了不同的三个社团:“楹联社”、“书法社”、“汉服社”,还满足如下条件:
(1)甲同学没有加入“楹联社”;
(2)乙同学没有加入“汉服社”;
(3)加入“楹联社”的那名同学不在高二年级;
(4)加入“汉服社”的那名同学在高一年级;
(5)乙同学不在高三年级.
试问:甲同学所在的社团是(  )
A.楹联社B.书法社
C.汉服社D.条件不足无法判断

分析 确定乙在高二,加入“书法社”,根据(1)甲同学没有加入“楹联社”,可得甲同学所在的社团是汉服社.

解答 解:假设乙在高一,则加入“汉服社”,与(2)矛盾,
所以乙在高二,根据(3),可得乙加入“书法社”,
根据(1)甲同学没有加入“楹联社”,
可得甲同学所在的社团是汉服社,
故选C.

点评 本题考查进行简单的合情推理,考查学生分析解决问题的能力,确定乙在高二,加入“书法社”是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.某校为了解学生的学习情况,采用分层抽样的方法从高一150人、高二120人、高三180人中抽取50人进行问卷调查,则高三抽取的人数是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设正实数a,b满足a+b=1,则(  )
A.$\frac{1}{a}+\frac{1}{b}$有最大值4B.$\sqrt{ab}$有最小值 $\frac{1}{2}$C.$\sqrt{a}+\sqrt{b}$有最大值$\sqrt{2}$D.a2+b2有最小值$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=lnx与函数g(x)=ax2-a的图象在点(1,0)的切线相同,则实数a的值为(  )
A.1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{1}{2}$或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*
(Ⅰ)求a2,a3,a4
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:
(Ⅰ)(1-2i)(3+4i)(-2+i)
(Ⅱ) (1+2i)÷(3-4i)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知分段函数y=$\left\{\begin{array}{l}{3-x,x<-1}\\{{x}^{2},-1≤x≤1}\\{x+1,x>1}\end{array}\right.$,若执行如图所示的程序框图,则框图中的条件应该填写(  )
A.x≥1?B.x≥-1?C.-1≤x≤2?D.x≤1?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列{an}满足a1=2,an+1=$\frac{1}{{1-{a_n}}}(n∈{N^+})$,则a2017=(  )
A.-2B.-1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知动圆C与圆C1:(x-2)2+y2=1外切.又与直线l:x=-1相切
(1)求动圆C的圆心的轨迹方程E;
(2)若动点M为直线l上任一点,过点P(1,0)的直线与曲线E相交干A,B两点.求证:kMA+kMB=2kMP

查看答案和解析>>

同步练习册答案