精英家教网 > 高中数学 > 题目详情
函数f(x)=x|arcsinx+a|+barccosx是奇函数的充要条件是 (  )
A.a2+b2=0B.a+b=0C.a=bD.ab=0
因为函数f(x)的定义域为[-1,1],且函数f(x)=x|arcsinx+a|+barccosx是奇函数,
则,f(0)=0,即barccos0=0,
所以,b=0.
再由f(-1)=-f(1),得:
-|arcsin(-1)+a|+barccos(-1)=-|arcsin1+a|+barccos1,
即-|-
π
2
+a|+πb=-|
π
2
+a|,
|-
π
2
+a
|=|
π
2
+a
|,
所以,a=0
所以,函数f(x)=x|arcsinx+a|+barccosx是奇函数的必要条件是a=0,b=0.
下面证明充分性
若a=0,b=0.
则f(x)=x|arcsinx|,
f(-x)=-x|srxsin(-x)|=-x|-arcsinx|=-x|arcsinx|=-f(x).
所以f(x)是奇函数.
综上,f(x)是奇函数的充要条件是 a=0且b=0,即a2+b2=0.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(1)“数列{an}为等比数列”是“数列{anan+1}为等比数列”的充分不必要条件;
(2)“a=2”是“函数f(x)=|x-a|在区间[2,+∞)为增函数”的充要条件;
(3)“m=3”是“直线(m+3)x+my-2=0与直线mx-6y+5=0相互垂直”的充要条件;
(4)设a,b,c分别是△ABC三个内角A,B,C所对的边,若a=1.b=
3
,则“A=30°”是“B=60°”的必要不充分条件.
其中真命题的序号是
(1)(4)
(1)(4)
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案