精英家教网 > 高中数学 > 题目详情
已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},
(Ⅰ)当a=10时,求A∩B,A∪B;
(Ⅱ)求能使A⊆(A∩B)成立的a的取值范围.
【答案】分析:(Ⅰ)当a=10时,A={21≤x≤25},B={x|3≤x≤22},由此能求出A∩B和A∪B.
(Ⅱ)由A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},且A⊆(A∩B),知,由此能求出a的取值范围.
解答:解:(Ⅰ)当a=10时,A={21≤x≤25},B={x|3≤x≤22},
∴A∩B={x|21≤x≤22},
A∪B={x|3≤x≤25}.
(Ⅱ)∵A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},
且A⊆(A∩B),

解得6≤a≤9.
∴a的取值范围是[6,9].
点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、已知非空集合A={x|ax=1},则a的取值范围是
a≠0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非空集合A={x∈R丨x2=a},实数a的取值集合为
{a|a≥0}
{a|a≥0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非空集合A={x|x2=a,x∈R},则实数a的取值范围是
[0,+∞)
[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},
(Ⅰ)当a=10时,求A∩B,A∪B;
(Ⅱ)求能使A⊆(A∩B)成立的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非空集合A={x|x2-ax+b=0},B={x|x2-8x+15=0},且A⊆B.
(1)写出集合B所有的子集;
(2)求a+b的值.

查看答案和解析>>

同步练习册答案