精英家教网 > 高中数学 > 题目详情
13.已知α∈[$\frac{π}{4}$,$\frac{π}{2}$]且sinα+cosα=$\sqrt{2}$,求cos2α的值.

分析 由已知利用同角三角函数关系式先求出sin2α=1,由此利用同角三角函数关系式能求出cos2α的值.

解答 解:∵α∈[$\frac{π}{4}$,$\frac{π}{2}$]且sinα+cosα=$\sqrt{2}$,
∴1+2sinαcosα=2,
∴sin2α=1,2$α∈[\frac{π}{2},π]$,
∴cos2α=$\sqrt{1-si{n}^{2}2α}$=0.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在△ABC中,角A,B,C的对边分别为a,b,c,且a=$\sqrt{5}$,b=3,sinC=2sinA,则△ABC的面积为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an},a1=2,an+1=($\sqrt{2}$-1)(an+2)(n∈N*),求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=log2(2-ax)在(-∞,1]上是减函数,则a的范围是(  )
A.[1,2]B.(1,2)C.(1,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,在半径为1,圆心角为90°的直角扇形OAB中,Q为AB上一点,点P在扇形内(含边界),且$\overrightarrow{OP}$=t$\overrightarrow{OA}$+(1-t)$\overrightarrow{OB}$(0≤t≤1),则$\overrightarrow{OP}$$•\overrightarrow{OQ}$的最大值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.x-2y+3>0表示的平面区域在直线x-2y+3=0的下方.(填“上”或“下”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.实数x,y满足$\frac{|x|}{9}$+$\frac{|y|}{4}$≤1,则z=2x-y的最小值为(  )
A.-18B.-4C.4D.-2$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C的所对的边分别是a,b,c,已知cosC=$\frac{1}{4}$,a2=b2+$\frac{1}{2}$c2
(Ⅰ)求sin(A-B)的值;
(Ⅱ)c=$\sqrt{10}$,求a和b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的两条渐近线分别l1,l2,右焦点F.若点F关于直线l1的对称点M在l2上则双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案